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Abstract—Enabling multi-person differentiation is crucial for
the wide adoption of Wi-Fi sensing, so it is imperative for Wi-
Fi sensing to gain GHz-level bandwidth and thus to achieve
sufficient spatial resolution. Whereas stitching wide bandwidth
leveraging continuous channel samples appears to be plausible,
it is inefficient (if not impossible) in both time and frequency
domains. Fortunately, as physical phenomena to be sensed are
often sparse, acquiring GHz-bandwidth from sparse channel
samples can be feasible. To this end, we propose CCS-Fi as a
novel scheme to widen Wi-Fi sensing bandwidth, exploiting sparse
and irregular channel samples. We start with establishing a com-
pressive sensing framework to analyze the potential of realizing
GHz sensing capability with only sparse channel samples. Then
we propose a model-driven deep learning strategy to implement
the sparse recovery process, aiming to derive radar-like channel
response as direct output while overcoming the impossibility of
obtaining labels for training. Through comprehensive experimen-
tal evaluations, we demonstrate that CCS-Fi achieves centimeter-
level resolution, effectively enabling indoor multi-person sensing.

Index Terms—Wi-Fi sensing, multi-person localization, com-
pressive sensing, spatial resolution.

I. INTRODUCTION

Due to its ubiquitous and easily accessible presence, Wi-Fi
is no longer regarded merely as a conventional communication
medium by academia and industry. Rather, significant efforts
have been directed towards harnessing its potential for en-
abling sensing applications [1]–[6]. Enabled by channel state
information (CSI) [7], Wi-Fi sensing demonstrates satisfac-
tory performance across diverse applications in single-person
scenarios [8]–[12]. However, how to achieve multi-person fine-
grained sensing remains an unsolved challenge hindering the
practical adoption of Wi-Fi sensing. As multi-person sensing
demands decimeter-level resolution and sufficient number of
differentiable persons (a form of physical diversity), it has
to be traded for by another form of physical diversity in
sensing. Existing approaches relying on either links [13]–[15]
or antennas [16]–[18] diversity can hardly be extended beyond
differentiating very few persons, significantly restricting their
applicability. Therefore, the only feasible option left is the
diversity in time-frequency domain.

Meanwhile, exploring time-frequency diversity is confined
to continuous channel stitching [19], [20]. However, it requires
an extensive number of continuous channel samples, posing
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Fig. 1: The continuous channel stitching framework demand-
ing a large number of continuous channel samples has proven
impractical. Instead, a compressive channel sampling frame-
work holds promise for widening Wi-Fi sensing bandwidth.

three main issues, as illustrated in Fig. 1(a). Firstly, Wi-
Fi channels may be occupied by other devices, making it
impractical to consistently rely on a large number of channels,
even if the continuity requirement can be lifted [21]. Secondly,
as significant overlap between adjacent channels is necessary
to counteract the boundary effect, channel stitching entails
extremely heavy over-sampling and subsequent computation
cost, making its practicality highly questionable. Last but not
least, commercial network interface cards (NICs) allows for
overlap between neighboring channels only in the 2.4 GHz
band with less than 100 MHz total bandwidth, rendering
GHz-bandwidth surely unachievable for sensing purpose even
with the aforementioned efforts. Therefore, an efficient and
effective framework has to be in place to widen the bandwidth
of Wi-Fi sensing system.

Fortunately, according to compressive sensing theory, phys-
ical phenomena can be recovered with a limited number of
samples if they are sparse [22]. This indicates the potential
to estimate subject information from significantly fewer and
arbitrary channel samples [23], providing three advantages.



Firstly, channel occupancy will no longer be a concern as each
channel is not essential. Secondly, relying on sparse channel
samples eliminates the need for excessive stitching due to
boundary effects, exhibiting high computational efficiency.
Finally, since overlap between channel samples is not required,
the entire channels offered by commercial NICs, spanning up
to 4.7GHz, are available, as illustrated in Fig. 1(b). Although
compressive sensing is a plausible strategy, sparse recovery
from discrete samples to widened effective bandwidth of Wi-
Fi remains a great challenge. Specifically, given the sparsity
of sensed information, fully recovering continuous channel
samples is neither necessary nor feasible, thus leaving the
recovery representation for multi-person sensing an open issue.
Furthermore, additional unknown parameters introduced by
compressive sampling in Wi-Fi render conventional algorithms
ineffective for extracting information from channel samples.

To address these challenges and fully leverage the ad-
vantages of compressive sensing, we propose a compressive
channel sampling framework for Wi-Fi sensing, termed CCS-
Fi. Initially, the inherent sparsity of information in Wi-Fi chan-
nel samples is analyzed to establish the compressive sensing
model. Based on this foundation, a deep learning network is
developed to resolve the underdetermined parameter estima-
tion problem. Subsequently, a model-driven training strategy
is designed to guide the network to filter out interference and
recover sparse channel samples in radar-like spectra. Finally,
we conduct thorough experiments on the prototype of CCS-Fi
to assess its performance. In summary, the contributions of
this paper are shown as follows:

• We propose a novel CCS-Fi framework for widening the
Wi-Fi effective sensing bandwidth to GHz level.

• We construct a compressive sensing model to analyze the
sensing capability of sparse channel samples, laying the
theoretical foundation for information recovery.

• We design a model-driven training strategy focused on
leveraging the meticulously crafted dataset to enable the
neural network to recover radar-like spectra from sparse
channel samples.

• We thoroughly evaluate CCS-Fi, demonstrating its per-
formance and influencing factors.

The rest of this paper is organized as follows: Section II
introduces the fundamentals of Wi-Fi sensing and outlines
the background and motivation. Section III presents the com-
pressive sensing model for sparse Wi-Fi channel samples.
Section IV introduces CCS-Fi framework and delves into
the deep learning strategy and data augmentation algorithms
developed for parameter estimation from discrete channel sam-
ples. Section V showcases the prototype of the proposed CCS-
Fi framework along with comprehensive evaluation results.
Section VI discusses related work. Finally, the conclusion is
presented in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we first establish the foundational model
for Wi-Fi sensing and analyze the influence of bandwidth on

spatial resolution. Further, we explain the necessity of over-
sampling for the continuous channel stitching and elucidate
the constraints it faces. Finally, we illustrate both the potential
and challenges of compressive sensing through observations
of spectra estimation from sparse channel samples.

A. Wi-Fi Sensing Fundamental

The k-th (k ∈ {1, 2, . . . ,K}) path in a Wi-Fi sensing system
can be described by its time of flight (ToF) τk and angle of
arrival (AoA) θk. Therefore, the channel gain of the s-th (s ∈
{0, 1, . . . , S − 1}) subcarrier at the Rx can be represented as:

hs,n =

K∑
k=1

αs,n,k · uk · pτks · pθkn + ϵ

=

K∑
k=1

αs,n,ke
−i2πfcτke−i2πsfbτk

(
e−i2π(n−1)d cos θkfc/c

)
+ ϵ,

(1)

where n ∈ {1, 2, . . . , N} represents the antenna index of Rx,
assuming that antennas in the system are uniformly arranged
with a distance of d. Constant α denotes the amplitude
attenuation, fc and fb represent the channel center frequency
and subcarrier bandwidth, respectively. Constant c is the speed
of light and ϵ indicates noise.

According to [24], the spatial resolution of Wi-Fi sensing
systems is ∆D = c/B, where B represents the signal band-
width. As ∆τ = 1/B is the temporal resolution, expanding the
bandwidth for ∆D essentially enhances the resolution of ToF.
Meanwhile, a wide Wi-Fi bandwidth indicates the presence of
more subcarriers in the signal, thereby also enhancing the res-
olution of AoA [25]. Thus, expanding the effective bandwidth
of Wi-Fi systems holds great significance in comprehensively
enhancing the performance of multi-person sensing.

B. Continuous Channel Stitching

To widen the Wi-Fi sensing bandwidth, ToneTrack [19] and
Splicer [20] attempt to stitch continuous channel samples; they
both require an overlap between adjacent channel samples
to align inconsistent boundaries. Accordingly, we perform
continuous channel scanning in the 2.4 GHz band, where
standard channels overlap [26], aiming to differentiate two
subjects with a separation of 3.8 m. We initially stitch the
continuous channel samples, as depicted in Fig. 2. Subse-
quently, the MUltiple SIgnal Classification (MUSIC) [27],
[28] is optionally selected from various feasible algorithms to
estimate subject information from the stitched signals (details
are provided in Section III-B), as shown in Fig. 3.

According to Section II-A, Wi-Fi signals with 80MHz band-
width can provide sufficient spatial resolution to differentiate
the two subjects. We initially stitch four 20 MHz channel
samples. However, both the stitched phase and magnitude
exhibit notable fluctuations, as shown in Fig. 2. The informa-
tion estimated by the signal stitched from 4 channel samples,
depicted in Fig. 3(a), unsurprisingly fails to differentiate the
two subjects. After observing persistent fluctuations when
increasing the number of channel samples to 8, we gradually
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Fig. 2: Results of continuous channel stitching.
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Fig. 3: ToF-AoA spectra of 4 and 13 channel samples.

increase it to 13, at which point the stitched phase and
magnitude become significantly smoother due to improved
calibration. The estimated ToF-AoA spectrum from them, as
shown in Fig. 3(b), successfully differentiates two subjects.

This result indicates that continuous channel stitching de-
mands a much larger number of channel samples than the-
oretically necessary to achieve satisfactory spatial resolution.
Given that achieving an effective bandwidth of only 80 MHz
requires 13 channel samples, widening it beyond 3 GHz
for centimeter-level resolution demands approximately 500
samples. This not only prevents the sampling efficiency from
meeting the channel coherence time [21] but also leads to a
waste of spectrum resources. Furthermore, according to our
evaluations performed on a MacBook Pro equipped with the
M1 Pro chip, each stitching process takes approximately 10ms.
Thus, stitching 500 channel samples takes approximately 5 s,
significantly surpassing the budget allowed by Wi-Fi real-time
sensing. Besides, the need for such a large number of channels
to be available is impractical. Therefore, it is imperative to
adopt a novel theoretical framework for efficiently widening
the Wi-Fi sensing bandwidth.

C. Compressive Channel Sampling

The limitations of continuous channel stitching prompt us
to explore the possibility of utilizing discrete and irregular
channel samples to widen the Wi-Fi sensing bandwidth. For-
tunately, physical phenomena sensed in real life are typi-
cally sparse [29], inspiring us that compressive sensing holds
promise. To validate the feasibility of compressive sensing,
we simulate three sparse 20 MHz channel samples spanning
a frequency range of 80MHz based on Eqn. (1) and estimate
the ToF-AoA spectra with the MUSIC algorithm. The results
are illustrated on the left side of Fig. 4. The highlighted
regions reveal that peaks appear only at very few positions in
each spectrum, confirming the sparsity of subject information.
However, due to the varying carrier frequencies of the channel
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Fig. 4: Sensing with compressive channel sampling. Left: ToF-
AoA spectra of channel samples with different frequencies,
right: synthesized ToF-AoA spectrum.

samples, the ToF-AoA spectra exhibit different patterns of
periodic aliasing, making it impossible to determine the loca-
tions of subjects based on a single channel sample. Therefore,
we synthesize the three ToF-AoA spectra (details are shown
in Section III-B), as illustrated on the right side of Fig. 4.
We can utilize maximum likelihood estimation to identify the
points with the highest occurrence of peak values, i.e., the
maximum values of the ToF-AoA spectrum, representing the
subjects’ information. This validates the potential of sparse
channel samples for widening the Wi-Fi sensing bandwidth.

However, the ToF-AoA spectrum from real-life sparse chan-
nel samples fails to reveal subject information, as shown in
Fig. 5(a). In addition to the influence of noise, the primary
reason for the obscurity is the discrete channel sampling,
wherein the Wi-Fi NIC needs to restart with each channel
switch, introducing random offsets that cannot be completely
eliminated. Among them, the carrier phase offset (CPO) has a
particularly severe impact on Wi-Fi sensing [1]. To illustrate
this issue, we control two Wi-Fi NICs to collect 50 samples in
a stable environment under two conditions: channel hopping
and staying on the same channel, and their phase differ-
ences [25], [30] of the received CSIs from the two Rx antennas
are shown in Fig. 5(b). The results indicate that, compared
to staying on the same channel, the phase difference under
the hopping condition shows significant random fluctuations.
With each sampling, although diversity information about the
subject is acquired, unknown interferences are also introduced,
potentially overwhelming the signal. This poses a challenge
for traditional signal processing algorithms to estimate subject
information from sparse channel samples.
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Fig. 5: Analysis of real-life channel samples. The additional
interference introduced by channel hopping impedes the esti-
mation of subject information from sparse channel samples.



In theory, deep learning models can fit any function through
effective training [31], [32], thus enabling the sparse recovery
of CSI signals. Aiming to emulate radar systems [33], [34], we
employ a deep learning model to map sparse channel samples
to the spectrum. The spectrum also offers several advantages.
Firstly, as a high-dimensional data form, the spectrum can
describe various quantities of subjects across different bins.
Secondly, sparse recovery involves information decompression
and reconstruction. The spectrum provides sufficient param-
eters to encode the CSI phase and amplitude, laying the
foundation for various ubiquitous Wi-Fi sensing tasks. Finally,
leveraging the bias-variance trade-off [35], the model’s perfor-
mance can be enhanced through distributing the estimated bias
into parameters unrelated to subjects. The ToF-AoA spectrum
presented in Fig. 4 offers a promising expression, and detailed
discussions will be provided in Section III-B and Section IV-C.

III. COMPRESSIVE SENSING FRAMEWORK

In this section, we begin by analyzing the feasibility of
compressive sensing with CSI signals. Next, a mathematical
model is established for sparse recovery, outlining the trans-
formation of sparse channel samples into the spectrum with
subject information to lay the foundation for algorithm design.

A. Compressive Sensing of CSI

In compressive sensing, channel sampling relies on the in-
formation content of the signal rather than its bandwidth [22].
The subject information in real-life scenarios tends to be
sparse, which allows for fine-granularity sensing with only a
small size of signals. To demonstrate it, assume that when the
effective bandwidth meets the spatial resolution ∆D, given by
B = c/∆D, the channel sample is H = {H1, H2, . . . ,HQ},
where H ∈ CQ and Q represents the quantity of standard
20 MHz channels, which is proportional to the bandwidth B.
We temporarily omit the number of Rx antennas N , as our
compressive sensing does not involve it.

To evaluate the feasibility of compressive channel sampling,
the raw CSI signal is generally expressed as H = ΨX , where
Ψ is an Q × Q sparse basis matrix for sensing purposes,
and X = f(τ, θ) serves as the sparse representation of H .
If ∥X∥0 ≤ r, X is referred to as r-sparse and establishes
the foundation for recovering H from a low-dimensional
measurement Y . The compressive sensing problem described
in this paper, which aims to achieve sufficient spatial resolution
with only a small number of sparse channel samples, can be
stated as follows: given measured signal Y ∈ CM with only
M discrete standard channels, recover the wideband channel
sample H with Q channels, where M ≪ Q. Suppose Φ is an
M ×Q measurement matrix that Y = ΦH , then

Y = ΦH = ΦΨX = ΘX, (2)

where Θ is referred to as the sensing matrix.
According to the Restricted Isometry Property (RIP) [36],

if there exists a constant δr ∈ (0, 1), assume Θ satisfy

(1− δr) ∥X∥22 ≤ ∥ΘX∥22 ≤ (1 + δr) ∥X∥22, (3)

it is highly probable to accurately reconstruct X with Y , thus
obtaining fine-granularity subject information. The sparsity
order r of X is adjusted according to the RIP, while satisfying
r ≤ CrM/ log(Q/M), where Cr is a constant [36], [37].
Hence, we can conclude that the dimension M of measured
channel samples only needs to meet:

M ≥ r log(Q/M)/Cr. (4)

This implies widening the effective bandwidth to B may
only require M channels if the information is sparse enough.

B. Sparse Recovery with CSI

Since sparse channel samples have the potential to provide
sufficient subject information, the further task is to investigate
how to effectively recover them. The ToF-AoA spectrum,
inspired by radar systems, offers a promising approach for
transforming sparse channel samples into spectral parameters.
Assuming the k-th path signal is uk = e−i2πfcτk , the signal
vector is U = [u1, u2, . . . , uK ]⊤. As shown in Eqn. (1), the
signal received by the Rx is influenced by the phase shifts of
subcarriers and antennas, denoted as pτks and pθkn , respectively.
Thus, the steering vector can be expressed as v(τk, θk) =
[pτk0 pθk1 , . . . , pτkS−1p

θk
1 , . . . , pτk0 pθkN , . . . , pτkS−1p

θk
N ]⊤, which is

then integrated into V (τ, θ) = [v(τ1, θ1), . . . , v(τK , θK)] for
all paths. The received signal vector H = V U + ϵ is poised
for spectrum estimation. Subsequently,

P (τ, θ) = g (H) , (5)

where g represents a mapping operation that can be imple-
mented by various estimation algorithms. Taking the MUSIC
algorithm mentioned above as an example, by constructing a
matrix E from eigenvectors corresponding to the l smallest
eigenvalues of HHH, the ToF-AoA spectrum is P (τ, θ) =

1
vH(τ,θ)EEHv(τ,θ)

, where superscript H denotes the Hermite
transpose of the matrix. Since E represents the noise vector
subspace, which is orthogonal to the signal vector subspace,
the subject information will appear as peaks in P (τ, θ) [25].

Spectrum P (τ, θ) can be directly applied to continuous
subcarriers (as shown in Section II-B). However, for discrete
samples, sparse recovery relies on the synthesized spectrum∑

j Pj(τ, θ). Section II-C illustrates that the periodic aliasing
in the spectral parameters obtained from the ideal CSI signal
poses a challenge to estimating the subject information. This
is primarily attributed to the fact that the τk and θk are:

τk = − ∠ (uk · pτks )

2π (fc + sfb)
mod

1

fc + sfb
, (6)

cos θk = − ∠hτk
n

2π(n− 1)dfc/c
mod

c

(n− 1)dfc
. (7)

The aliasing is not apparent in the ToF dimension of Fig. 4
due to the sufficient number of subcarriers. If fc = 2412MHz
and d = 0.32 m, then the modulus of cos θk (not θk itself)
is 0.389. Since θ ∈ [0◦, 180◦], meaning cos θk ∈ [−1, 1],
the spectrum on the left side of Fig. 4 exhibits multiple
peaks in the AoA dimension. When fc = 2437 MHz, the



modulus of cos θk is 0.385, and it is 0.381 for 2462 MHz.
The aliasing peaks changes as fc varies, whereas the true peaks
remain unaffected. Synthesizing multiple spectra with different
fc values enables the detection of parameters corresponding
to the subjects at the maximum peaks. This provides us
with the mathematical model of sparse recovery and radar
emulation that deep learning algorithms need to accommodate.
It also offers an alternative understanding of resolution: the
differences in aliasing peaks caused by adjacent channels are
minimal, which prompts a large number of continuous channel
samples to induce enough variation in fc for enhancing spatial
resolution. On the other hand, sparse channel samples with
a wide span can directly facilitate the recovery of subject
information based on high diversity. We will demonstrate how
to achieve this goal under real-life scenarios in Section IV.

IV. CCS-FI ALGORITHM DESIGN

In this section, we first design the framework of CCS-
Fi. Building upon this, we devise a background interference
generation algorithm for input data to enhance the model’s
generalizability. Following that, radar-like spectrum outputs
are designed as labels to train the neural network. Lastly,
we introduce a spectrum enhancement algorithm aimed at
improving the performance of the label.

A. CCS-Fi Framework Design

Leveraging sparse channel samples to achieve high spatial
resolution is well-established through compressive sensing,
yet the uncertain nature of real-life CSI signals impedes the
recovery of subject information from them. Therefore, we
design a novel CCS-Fi framework, as depicted in Fig. 6,
utilizing a model-driven deep learning strategy to recover
sparse channel samples into radar-like spectrum outputs. In
this framework, our contributions encompass three aspects:

• Enhancing raw CSI data enables the deep learning model
to effectively filter out diverse background multipath
interferences, thereby attaining cross-domain capability.

...
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Fig. 6: Framework of CCS-Fi.

• Crafting spectral parameters as ground truth to train the
neural network model for emulating radar system output.

• Optimizing the spectrum to highlight subject-related in-
formation, thereby improving model performance.

To address these challenges, we begin by generating various
potential interference components that may exist in typical
indoor environments and then incorporate them into the real-
life sparse channel samples. Next, we transform the ground
truth parameters into ToF-AoA spectra with diverse peak
values associated with subject information and further enhance
their significance. Finally, we establish a deep learning model
and train it leveraging real-life CSI signals with diverse back-
ground interference as inputs, and enhanced ToF-AoA spectra
as labels. This training strategy drives the model to perform
denoising, calibration, and transformation of sparse channel
samples into radar-like spectrum, enabling the utilization of
peak value regions for ubiquitous sensing. We will detail the
algorithms in the following sections.

B. Background Interference Generation

The Wi-Fi sensing model needs sufficient generalizability
to adapt to diverse domains. The issue is typically addressed
by training deep learning models on large datasets collected
from various environments. However, it comes with high
costs and often yields unsatisfactory performance in unknown
environments. Besides facilitating precise subject information
capture through high spatial resolution, the CCS-Fi framework
offers an efficient solution by diversifying the training dataset
with model-generated interferences. We analyze various types
of background interference in typical indoor environments and
estimate their reflection paths. Then, they are transformed into
ideal CSI samples and added to the real-life samples to obtain
a diverse dataset.

Assuming a background interference TBl
= (τBl

, θBl
), it

can be transformed into an ideal CSI sample HBi
l

according

Algorithm 1: Diversification of Background Interference

Input: Real-life sparse channel sample dataset HR and
potential background interferences TB.

Output: Dataset with diverse interferences H .
1 Initialization: L is the size of HR and H = ∅.
2 for l = 1, . . . , L do
3 Randomly select a tuple TBl

= (τBl
, θBl

) from TB;
4 Generate αl and ϵl;
5 Obtain the parameter vector Ωl = {τBl

, θBl
, αl, ϵl};

6 Extract frequency vector f l
c = {f l

c1 , f
l
c2 , . . . } from

HRl
= {HR1

l
, HR2

l
, . . . };

7 for f l
cj ∈ f l

c do
8 HBj

l
← Eqn. (1) with parameters Ωl and f l

cj ;

9 Hlj = HRj
l
+HBj

l
;

10 end
11 H = H ∪Hl.
12 end



to Eqn. (1). Subsequently, by introducing variations in the
amplitude α, noise ϵ, and fundamental frequency fc, a diverse
set of components HBl

= {HB1
l
, HB2

l
, . . . } is generated.

Finally, a comprehensive dataset of background interference
HB = {HB1

, HB2
, . . . } is gathered leveraging the augmenta-

tion of all potential interferences, i.e., TB = {TB1
, TB2

, . . . }.
Moreover, by adjusting the parameters α and ϵ, the size of the
generated background interference dataset matches that of the
real-life dataset, allowing us to merge them through random
mapping. The details are illustrated in Algorithm 1.

C. Model-Driven Label Generation

We aim to transform sparse channel samples into radar-
like spectra leveraging a deep neural model. However, as
described in Section II-C, real-life channel samples cannot
be transformed into informative spectra through existing al-
gorithms, leading to a lack of labels for training. Fortunately,
we can generate ideal CSI samples by ground truths, i.e., ToF
and AoA tuples, and then utilize the estimation algorithm
to transform them into spectra. Subsequently, synthesizing
multiple spectra based on compressive sensing yields the
radar-like output. Notably, the sparsity of the generated data
does not need to match that of the input data. Instead, it
can leverage a larger number of channel samples for accurate
spectrum recovery. Finally, we meticulously design parameter
fluctuations within a tolerance range, thereby acquiring a label
dataset with comprehensive information.

Assuming the real-life sparse channel sample used for
training is HRl

, where the ground truth is represented as
TRl

= (τRl
, θRl

). The tuple can be transformed into an
ideal CSI vector ĤRl

= {ĤR1
l
, ĤR2

l
, . . . } with various fc

according to Eqn. (1). Subsequently, they are further estimated
into the ToF-AoA spectra {Pl1 , Pl2 , . . . } as per Eqn. (5),
and the synthesized spectrum Pl =

∑
j Plj serves as the

radar-like label containing subject information. The ToF-AoA
spectrum, defined by a discrete grid of ∆ = (∆τ,∆θ),

Algorithm 2: Spectrum Label Generation

Input: Ground truth dataset TR, fundamental
frequency vector fc = {fc1 , fc2 , . . . }.

Output: Spectral label dataset P .
1 Initialization: L and Lc are the sizes of TR and fc

respectively, and P = ∅.
2 for l = 1, . . . , L do
3 Initialization: Pl = 0;
4 τRl

∈ {τRl
−∆τ̂ , τRl

, τRl
+∆τ̂};

5 θRl
∈ {θRl

−∆θ̂, θRl
, θRl

+∆θ̂};
6 for fcj ∈ fc do
7 Hlj ← Eqn. (1) with τRl

, θRl
, fcj ;

8 Plj ← Eqn. (5) with Hlj ;
9 Pl = Pl + Plj ;

10 end
11 P = P ∪ (Pl/Lc).
12 end

Algorithm 3: ToF-AoA Spectrum Enhancement

Input: Original ToF-AoA spectrum P ; parameters κ,
γ, Lo ∈ O, and σ for the enhancement.

Output: Enhanced ToF-AoA spectrum P.
1 for i, j = −(Lo − 1)/2, . . . , (Lo − 1)/2 do

2 Υi,j =
i2+j2−2σ2

2πσ6 e−
i2+j2

2σ2 .
3 end
4 P = κ |P |γ ;
5 P = P⊙ (P ∗Υ), where ⊙ and ∗ represent the

Hadamard product and convolution, respectively;

6 P = max (P )
max (P)P.

implies the existence of a tolerance range, enabling the spectra
to encode comprehensive information. Assuming a random
perturbation ∆̂

(
∆τ̂ ,∆θ̂

)
, where 0 < ∆ − ∆̂ < ∆, multiple

spectra can be generated utilizing {τ − ∆τ̂ , τ, τ + ∆τ̂} and
{θ−∆θ̂, θ, θ+∆θ̂}. Randomly selecting one of these spectra
as the corresponding output for the input helps improve the
generalization of the deep learning model. The details are
provided in Algorithm 2.

D. ToF-AoA Spectrum Enhancement

In general, estimation algorithms, e.g., MUSIC, are influ-
enced by the geometric structure of the antenna array, even in
the ideal scenario without noise and hardware-related offsets,
which means that satisfactory spectral parameters cannot be
guaranteed for the subject under all conditions. Additionally,
as shown in Fig. 4, Eqn. (6), and Eqn. (7), the synthesized
spectrum still exhibits periodic aliasing, which may impact
the training of the deep neural model. Therefore, the ToF-
AoA spectrum should be further enhanced to ensure high-
quality labels. To address this, the gamma transformation is
firstly employed to amplify the contrast of spectral parameters.
Then, we apply a specially designed operator to smoothly
attenuate interference components, thereby further magnifying
the differences between subject and background parameters.
The details are presented in Algorithm 3.

V. EXPERIMENT AND EVALUATION

In this section, we first introduce the implementation of
CCS-Fi prototype and outline the experiment setup. Next, we
conduct a comprehensive evaluation of CCS-Fi, showcasing its
overall performance in multi-person fine-granularity sensing.
Finally, we analyze various factors that influence the perfor-
mance of CCS-Fi.

A. Prototype and Experiment Setup

1) Prototype of CCS-Fi: CCS-Fi is deployed on two laptops
equipped with Intel’s AX210 NICs, which support 2.4, 5, and
6 GHz bands, offering a wide range of channel options. We
install the PicoScenes platform [38] on the two laptops running
the Linux kernel version 5.15.0-60 and collect sparse channel
samples with a custom plugin. Next, we construct an end-to-
end regression model leveraging the ResNet [39] architecture
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based on experience to transform CSI data into ToF-AoA
spectra. Finally, we train the model according to the pipeline
proposed in Section IV. Notably, our main contribution lies
in the pipeline for training the deep neural model. With
its support, any model capable of the transformation can
be effective, allowing users to employ more complex neural
models for further improvement.

2) Experiment Setup: We recruit 8 subjects with varying
body sizes and collect sparse channel samples in the rehearsal
room (RR), lecture room (LR), reading room (RD), conference
room (CR), discussion room (DR), and private office (PO).
To verify the cross-domain capability of CCS-Fi, we use the
data collected in the RR for training, where the scene is
shown in Fig. 7(a). The Tx and Rx (i.e., the two laptops) are
placed at opposite sides of the room, and the locations of the
subjects are illustrated in Fig. 7(b), where the ground truth is
associated with the center of the subject. The data collected in
other environments are utilized for testing. Fig. 7(c) illustrates
one of the multi-person testing scenarios. To attain sufficient
proximity for testing the resolution limit of CCS-Fi, we
additionally employ two electric pendulums as subjects, as
depicted in Fig. 7(d). The details will be discussed below.

B. Overall Performance

1) Localization Accuracy: For localization, CCS-Fi ini-
tially collects 20 sparse channel samples and transforms them
into a ToF-AoA spectrum. Subsequently, maximum likelihood
estimation is employed to identify the points corresponding to

0 0.1 0.2 0.3 0.4 0.5 0.6

Localization error [m]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
D

F

(a) Proposed CCS-Fi.

0 1 2 3 4 5 6 7 8 9 10

Localization error [m]

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

C
D

F

(b) Continuous channel stitching.

Fig. 8: Localization accuracy.

20 22 24 26 28 30

ToF [ns]

30

60

90

120

150

A
o

A
 [

d
eg

] LoS

1

8

Subjects4
5

2

7

3

6

(a) Proposed CCS-Fi.

10 14 18 22 26 30

ToF [ns]

30

60

90

120

150

A
o

A
 [

d
eg

]

(b) Continuous channel stitching.
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the subjects from peak values. Finally, the polar coordinates
described by ToF and AoA are converted into Cartesian
coordinates to determine the subjects’ positions. The accuracy
is defined as the error between the measured values and the
ground truth, whose cumulative distribution is illustrated in
Fig. 8(a). Continuous channel stitching is also tested as the
baseline, as depicted in Fig. 8(b). However, due to its require-
ment for overlapped channel samples and not involving cross-
domain capability, we present its error for a single environment
and subject based on the channels within the 2.4 GHz band.
CCS-Fi achieves a median error of approximately 6 cm and
a 90th percentile error of 18 cm, significantly surpassing the
errors of 4.0 m and 6.5 m obtained by the baseline. The
accuracy can effectively meet the requirements of typical
indoor localization scenarios.

2) Localization Resolution: The spatial resolution is the
capability to distinguish multiple subjects at different dis-
tances. To validate it, we test 8 subjects seated on both sides
of the table in the CR using CCS-Fi and baseline methods,
respectively. The spectrum obtained by CCS-Fi, as shown in
Fig. 9(a), displays multiple distinct peak values, allowing for
the identification of all 8 subjects. However, the spectrum from
the baseline method, as depicted in Fig. 9(b), does not provide
any information related to these subjects. The result proves the
successful expansion of effective sensing bandwidth by our
CCS-Fi, thereby achieving satisfactory spatial resolution.

3) Gesture Detection: We instruct 8 subjects in the CR
to simultaneously perform 6 different gestures, including
forward-backward (FB), up-down (UD), left-right (LR), draw
circle (DC), zig-zag (ZZ), and clap (CL). We track multiple
consecutive ToF-AoA spectra obtained by CCS-Fi and extract
several magnitude values within the region corresponding to
the subject, thereby obtaining a time series signal. Then, the
model provided by Widar 3.0 [40] is employed to identify
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Fig. 10: Gesture detection results.
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Fig. 11: Impact of channel number.

gestures from these data. The overall performance, depicted in
Fig. 10(a), exceeds 97%. We further analyze the F -score [41]
of each subject to comprehensively evaluate their recognition
results, as depicted in Fig. 10(b). Although the F -score of
each subject fluctuates due to factors such as body size or
occlusion, they all exceed 0.96, indicating satisfactory results.
Furthermore, as a platform capable of providing multi-person
fine-granularity sensing, CCS-Fi can utilize the above pipeline
to accomplish various sensing tasks, whereas the baseline
method is confined solely to localization.

C. Impact Factors

1) Number of Channels: We first analyze the impact of the
number of channels on localization accuracy and resolution.
For the accuracy analysis, CCS-Fi randomly collects 5 to 50
sparse channel samples and evaluates performance leveraging
median and 90th percentile errors. The results, as shown in
Fig. 11(a), indicate that both the errors decrease as the number
of channels increases, but these changes level off after reaching
20 channel samples.

We employ the same setup to analyze spatial resolution.
In order to ensure a sufficiently small distance between the
two subjects, we conduct tests on the two pendulums depicted
in Fig. 7(d). The results, shown in Fig. 11(b), indicate that
resolution improves with an increase in the sampled channel
quantity, reaching sub-decimeter level at 50 channels. For
time budget and performance considerations, CCS-Fi samples
20 channels, achieving a resolution of approximately 20 cm,
which is sufficient for indoor scenarios to distinguish normal-
sized adults. Notably, even with only 5 channel samples,
CCS-Fi still outperforms the baseline shown in Fig. 8(b) and
Fig. 9(b). This is primarily attributed to CCS-Fi’s ability to
achieve a wider effective bandwidth through sparse recovery
compared to continuous channel stitching.

We delve into the impact of the number of channels on the
equivalent ToF and AoA resolutions, as shown in Fig. 12.
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Fig. 13: Impact of channel placement.

Apart from ToF, the resolution of AoA also improves as
the number of channels increases, which is expected to be
correlated with the number of antennas. The primary reason
is that increasing the number of sampled channels in a Wi-Fi
sensing system means augmenting the number of subcarri-
ers. This actually provides a greater number of independent
measurements, enabling super-resolution analysis in the AoA
dimension by reconstructing the sparse channel samples into
a sensor array [25], a process also learned by CCS-Fi.

2) Placement of Channels: Following the same experimen-
tal setup as previously described using 20 channel samples,
we proceed to investigate the impact of channel placement
on accuracy and spatial resolution. We design three scenar-
ios: randomly selected channel samples (Regular), manually
selected compact channel samples (Compact), and loose chan-
nel samples spanning 2.4 GHz-6 GHz bands (Loose). The
results, as depicted in Fig. 13, demonstrate that both accuracy
and resolution achieve the best performance under the loose
placement, while performing the worst under the compact
scenario. The main reason is that the broader span of the loose
placement provides greater diversity, enabling the recovery
of a wider effective bandwidth from sparse channel samples.
Therefore, when the availability of all channels is known,
manually setting a loose placement of channels can assist
CCS-Fi in achieving better performance.

3) Number of Subjects: To demonstrate the number of
subjects that CCS-Fi can distinguish, we increase to 15 people,
enough to fill the CR, standing randomly in various positions.
The result, as shown in Fig. 14(a), clearly displays multiple
distinct peaks in the ToF-AoA spectrum (indicated by the
dark warm-colored points), enabling us to identify all 15
people. Furthermore, we also conduct additional analysis on
the localization errors of the 15 subjects, as depicted in
Fig. 14(b). The maximum error is only 10.6 cm, while the
minimum error is less than 2 cm. These findings underscore
the stable performance of CCS-Fi, even in scenarios involving
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Fig. 15: Impacts of environment and subject.

a substantial number of sensed subjects.
4) Cross-domain: To further validate the cross-domain ca-

pability of CCS-Fi, we analyze the performance of 7 untrained
subjects in 5 unknown environments. Fig. 15(a) shows the
localization errors of all subjects across various environments.
The results indicate that accuracy remains relatively stable, and
even in the most complex PO environment, the localization
error stays within an acceptable range. Fig. 15(b) illustrates
the localization errors of each subject across all environments.
The results show that their median and 90th percentile errors
are approximately 6 cm and 20 cm, respectively. The slightly
larger errors for Subject II may arise from the smaller body
size or higher level of noise interference. The above results
adequately demonstrate that the performance of CCS-Fi is
minimally affected by the environment and subject. This is
primarily attributed to the sparse channel sampling strategy
effectively widening the sensing bandwidth and accurately
separating subjects from complex background interference.

5) Training Strategy: To demonstrate the importance of
Algorithm 1 (Diversification) and Algorithm 3 (Enhancement),
we separately test their performance without utilizing either
algorithm. Fig. 16(a) illustrates the cumulative distribution of
localization errors for CCS-Fi without Algorithm 1, where the
median and 90th percentile errors increase to 22cm and 3.4m,
respectively. The results demonstrate that Algorithm 1 effec-
tively assists CCS-Fi in enhancing cross-domain capability,
which is also crucial for reducing the workload associated with
training data collection. Fig. 16(b) illustrates the localization
errors of CCS-Fi without Algorithm 3, where the median and
90th percentile errors increase to 12cm and 4.4m, respectively.
This indicates that the enhancement algorithm is necessary to
achieve accurate spectrum-like labels for training.

VI. RELATED WORK

In this section, we categorize existing proposals related
to CCS-Fi into two main types: localization and ubiquitous
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Fig. 16: Ablation studies on localization error.

sensing, based on the development of Wi-Fi sensing systems.
a) Wi-Fi Localization System: As a widely recognized

pioneering work, SpotFi [25] treats each subcarrier as an
independent measurement and reconstructs it into a sensor
array, allowing for super-resolution analysis of AoA with
only three antennas. To further improve ToF accuracy, Tone-
Track [19] and Splicer [20] collect overlapped channel samples
to expand effective bandwidth. Chronos [21] continuously
samples standard channels to estimate the position of user
device. M3 [8] leverages channel hopping to enable the
estimation of AoA and ToF for sub-meter accuracy. To further
identify NLoS paths, LiFS [42] establishes a multi-link system
and selects subcarriers unaffected by multipath interference.
Widar [43] achieves tracking of subjects by establishing a
quantitative relationship between CSI dynamics and their posi-
tions. Widar2.0 [9] integrates AoA, ToF, and DFS to construct
a model capable of single-person tracking, and mD-Track [17]
goes a step further by incorporating AoD into consideration.

b) Wi-Fi Human Sensing System: As a further advancement,
the Wi-Fi ubiquitous sensing system greatly enhances user ex-
periences. SLNet [3] employs a deep learning model for high-
resolution spectra generation, establishing a versatile wireless
sensing framework that surpasses time-frequency uncertainty
constraints and enables applications such as HAR. Multi-
Track [13] removes static components from the CSI to extract
DFS from dynamic components associated with subject mo-
tion, thereby achieving multi-person sensing. MultiSense [16]
leverages the ICA to estimate signals for facilitating multi-
person respiration recovery. SenCom [4] calibrates the CSI
of different Wi-Fi communication modes and provides unified
measurements for sensing. In addition to algorithmic efforts,
MUSE-Fi [14] utilizes signals emitted by multiple devices for
sensing subjects in close proximity.

VII. CONCLUSION

We have introduced a novel CCS-Fi framework based on
compressive sensing theory, which widens the effective band-
width of the Wi-Fi sensing system. We initially design a diver-
sification algorithm to enrich background interference within
limited training data, thereby endowing CCS-Fi with cross-
domain capabilities. Subsequently, to emulate radar systems,
we transform tuple-structured ground truth into spectrum-like
labels to train the neural network, while alleviating the fitting
pressure and encoding phase information relevant to subjects
in CSI. Finally, we develop an enhancement algorithm for the
label, further improving its performance. We have constructed
a prototype system based on these algorithms and conducted
thorough evaluations. The results demonstrate that CCS-Fi
successfully achieves multi-person fine-granularity sensing ap-
plications in typical indoor scenarios.
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