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In order to extract slight characteristics and achieve exact control of engine knock to improve the overall
performance of engine, the optimized Variational Mode Decomposition (VMD) algorithm is introduced to
process the vibration signals of engine. Combined with recursive model and energy difference tracking
method, the optimized VMD can decompose signals into several modes based on stop criterion instead
of artificial values set in advance. Besides, the initial values of center frequencies are also optimized
for stability and efficiency. An analog signal is firstly decomposed by this method, and result shows that
the optimized VMD has ability to extract components accurately. Then this method is applied for the
decomposition of tested engine vibration signals and compared with the Empirical Mode
Decomposition (EMD) and traditional VMD, the results show that the optimized VMD can eliminate effect
of noise and extract knock at different intensities more accurately and quickly.
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1. Introduction

As one of main power sources, engine draws much attention on
its power and economy because of global energy and environmen-
tal crises. The down-sizing of engine, represented by turbocharger
technology and gasoline direct injection, is an effective way to
increase combustion efficiency of gasoline. With the development
of down-sizing, knock increases significantly. Knock is an abnormal
combustion phenomenon, which is caused by one or more pockets
of air/fuel mixture explode outside the envelope of normal com-
bustion front [1]. It will reduce the performance and useful life of
engine greatly. However, slight knock is helpful in improving the
combustion in engine, so it’s necessary to detect and control engine
knock precisely [2,3]. Common methods for knock detection
include detecting combustion noise [4,5], collecting cylinder pres-
sure [6,7], extracting block vibration features [8] and so on. Among
these methods, detecting combustion noise is greatly affected by
external factors [9]; collecting cylinder pressure is expensive and
flimsy [10]; extracting block vibration features is widely used
because of its low-cost, reliability and convenience [11]. The prin-
ciple of detecting knock by vibration is that: high frequency oscil-
lation in cylinders will transfer to block. Researchers collect and
analyze vibration signals from sensors placed on block and then
knock feature will be extracted. For example, Zadink et al. [12]
used vibration signals of engine block to analyze knock.

However, engine block vibration signals contain very complex
information. Its non-stationary character leads to poor detection
precision which causes difficulty in detecting slight knock.
Researchers have developed different algorithms for vibration sig-
nal processing, including traditional time-frequency analysis,
wavelet transforms, the Empirical Mode Decomposition (EMD)
[11–15] and so on. Traditional time-frequency analysis method
such as Short Time Fourier Transform (STFT) cannot keep high-
resolution both in time domain and frequency domain. Wavelet
transform is essentially not an adaptive time-frequency analysis
method [16]. For adaptive analysis methods, the EMD has insur-
mountable limitations because of its recursive decomposition
model. The limitations, such as mode mixing, end effect, over
and under decomposition, still puzzle researchers [17,18].
Although the Ensemble Empirical Mode Decomposition (EEMD)
can alleviate mode mixing, it’s followed by other problems. For
example, the white noise (can’t be eliminated completely) will
cover weak energy signal and the increasing of computing time,
which hobble the real-time diagnosis [19,20]. These problems seri-
ously affect the practical application of those algorithms.

A new adaptive decomposition algorithm, Variational Mode
Decomposition (VMD), was proposed by Dragomiretskiy et al.
[21]. It is a non-recursive variational mode decomposition model,
which is a generalization of the classic Wiener filter into multiple,
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adaptive bands. Compared with EMD, the VMD is much more
robust to sampling and noise.

There are various control parameters in VMD. Especially, the
number of modes, K, is important for detecting knock in uncertain
vibration signals and has a significant impact on over or under
decomposition, which will result in mode mixing and ignoring
for low power components. Many researchers tried to solve this
problem and got three main methods. The first method is selecting
a K value by prior knowledge. For example, Zipeng Li et al. [22]
selected the K value by the number of local peaks in frequency
domain. Fuhao Li et al. [23] selected the K value by effective modes
number of the same signal decomposed by EEMD. The second
method is searching a best K value for a specific signal by some
indexes and using this parameter in subsequent computations.
For example, Zhang et al. [24] searched a K value by energy and
correlation coefficient. The third method is decomposing a signals
with VMD in different K values and selecting the best one as final
results. For example, Liu et al. [25] took scaling exponent as index
andWan et al. [26] took the degree of frequency mixing as index to
decompose a signal from a presupposed K value until results met
requirement. The first one is subjective and can’t decompose a sig-
nal automatically, the K value selected by the second method is not
suitable for all signals, the third one’s calculation efficiency is too
low. There is no recognized method to select K value. Therefore,
the VMD should be further optimized to get modes by criterion
adaptively.

This paper is organized as follows: VMD algorithm is briefly
introduced in Section 2. The analysis of original VMD, optimization
of VMD and its feasibility confirmed by the decomposition results
of an analog is shown in Section 3. The experiment is described in
Section 4. The Analysis, comparison and discussion for application
of optimized VMD in knock detection are shown in Section 5. Con-
clusions and outlook are in Section 6.
2. VMD algorithm

The goal of VMD algorithm is to decompose an input signal f
into several modes uk. The uk is defined as an amplitude modula-
tion signal with limited bandwidth, and it compacts around the
center pulsation xk [21].

First, VMD algorithm obtains the analytic signal of each mode uk

by the Hilbert transform, the AukðtÞ is:

Auk tð Þ ¼ uk tð Þ þ j
p

Z þ1

�1

uk vð Þ
t � v dv ¼ d tð Þ þ j

pt

� �
� uk tð Þ ð1Þ

where the d is Dirac distribution, j is the imaginary unit and j2 = �1.
Next, an estimated center frequency, e�jxkt, is mixed into the

analytic signal, so the spectrum of mode will be modulated to
the baseband, the BukðtÞ is:

Buk tð Þ ¼ Auk tð Þe�jxkt ¼ d tð Þ þ j
pt

� �
� uk tð Þe�jxkt ð2Þ

where the xk is the center frequency.
The bandwidth of mode can be obtained by computing its

squared L2-norm, so the constrained variational problem is as
shown:

min
fukg;fwkg

P
kk @t d tð Þ þ j

pt

� �
� uk tð Þ

h i
e�jxkt k

2

2

� �
s:t:
P

kuk ¼ f

8<
: ð3Þ

where ukf g :¼ u1; � � � ;uKf g and xkf g :¼ x1; � � � ;xKf g is the short-
hand notations for the set of all modes and their center frequencies.

The
P

k :¼
Pk

k¼1is the summation over all modes.
In order to solve the constrained variational problem, a quadra-
tic penalty term a and Lagrange multipliers,k; are introduced. The
quadratic penalty term is used to encourage reconstruction fide-
lity, typically in the presence of additive Gaussian noise. The
Lagrange multipliers can enforce constraints strictly. The aug-
mented Lagrange is as shown:

L ukf g; xkf g; kð Þ : ¼ a
X
k

k @t d tð Þ þ j
pt

� 	
� uk tð Þ

� �
e�jxkt k

2

2

þ k f tð Þ �
X
k

uk tð Þ k2
2

þ k tð Þ; f tð Þ �
X
k

uk tð Þ
* +

ð4Þ
The quadratic problem can be solved easily in the Fourier

domain [17]:

u
_nþ1

k xð Þ ¼ f
_

ðxÞ �Pi–ku
_

iðxÞ þ k
_
ðxÞ
2

1þ 2a x�xkð Þ2
ð5Þ

xnþ1
k ¼

R1
0 x u
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The Lagrange multipliers, k; is that:

k
_nþ1

xð Þ ¼ k
_n

xð Þ þ s f
_

xð Þ �
X
k

u
_nþ1

k

 !
ð7Þ

The n is the number of iterations.
According to those, the original minimization problem is found

as the saddle point of augmented Lagrange. Based on that, the
Alternate Direction Method of Multipliers (ADMM) is used to
update uk; xk; k The VMD algorithm is given in detail as follows:

① Initialize u1
k

� �
; x1

k

� �
; k
_1

; n to 0;
② n = n + 1, and execution loop;
③ Update uk by the formula (5);
④ Update xk by the formula (6);
⑤ Update k by the formula (7);
⑥ Repeat step ②–⑤ until the iteration stop condition is met:

X
k

k unþ1
k � un

k k22=k un
k k22

� �
< e ð8Þ

When the loop completes, the input signal will be decomposed
into K modes. The general value of e is 1 � 10�7.
3. The optimized VMD algorithm

The number of modes in VMD should be set in advance, but
there is no selection criterion for that, which will cause over or
under segmentation in decomposition of real vibration signals. So
the VMD algorithm is optimized in order to achieve modes auto-
matically and get Intrinsic Mode Functions (IMFs) with physical
meanings.

3.1. The analysis of VMD

3.1.1. The analysis for number of modes in VMD
As mentioned above, the number of modes, K, in VMD has a

great effect on results. In order to analyze the influence of K value
on VMD, we use an analog signal to explain. The equations of this
analog signal are as follows:
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s1¼30�sin 1
18fs�ptþ100

3 p
 �

s2 ¼

200�sin 2500
9 fs�ptþ5�105

3 p
� �

if t2½0:0020s; 0:0026s�

150�sin 2500
9 fs�ptþ5�105

3 p
� �

if t2½0:0056s;0:0058s�

100�sin 2500
9 fs�ptþ5�105

3 p
� �

if t2½0:0088s;0:0091s�
0 else

8>>>>>>><
>>>>>>>:

s3¼g
s4¼50�sin 5

9fs�ptþ1000
3 p

 �
s¼ s1þs2þs3þs4

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð9Þ
where t 2 ½0;0:01s�, the fs is sampling frequency, fs = 51200 Hz in
this paper to correspond to the experiment in later section. s1 is a
low frequency sine signal, s2 is an impact signal, g(i.e. s3) is noise.
To simulate actual situation, the noise in this paper is not the white
Gaussian noise but only some random numbers in [-20, 20]. s4 is a
high frequency sine signal, s is the analog signal, as shown in Fig. 1.

The components of analog signal are known with the first peak
in frequency domain corresponding to s1, the second peak with
wide bandwidth to s2 and the last peak to s4. According to [21],
the best K value is 3. So, we decompose this analog signal under
K = 2, 3, 4 to simulate under decomposition, normal decomposition
and over decomposition respectively. The results are shown as
Figs. 2–4.

As shown in Figs. 2–4, when K = 2, the result emerges under
decomposition because VMD method doesn’t extract impact com-
ponent successfully. When K = 3, all components are extracted and
there is no illusive component in result. When K = 4, although all
components are extracted but the fourth mode is an illusive com-
ponent (the frequency of s3 is wide. So, it’s not the noise compo-
nent). This is only slight over decomposition. In order to analyze
heavy over decomposition, we decompose this analog signal in
K = 5. The result is shown as Fig. 5.

As shown in Fig. 5, when K = 5, the result emerges heavy over
decomposition. The result not only obtains an illusive component
(the fifth mode) but also decompose the impact component into
two modes (the second and third modes).

In engine knock and other faults detection, under decomposi-
tion implies losing feature and over decomposition implies mode
mixing. Therefore, in order to decompose signals with VMD accu-
rately, we must select a suitable K value.
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3.1.2. The analysis for initial center frequency in iteration
In original VMD, the core solving process is the iteration by

ADMM, in which center frequency, xk, is the most easy to control.
Dragomiretskiy et al. [21] provided three methods to control the
iteration of center frequency: initializing xk to zero, initializing
xk linearly and initializing xk randomly. Among those, initializing
xk to zero is suitable for signals with narrow bandwidth in low fre-
quencies; initializing xk linearly is suitable for signals with wide
bandwidth, which have the same characteristic as engine vibration
signals; initializing xk randomly leads to highly random results
and can’t be used in actual calculation.xk has a great effect on cal-
culation efficiency and accuracy. If the initial values of xk is set
properly, the iteration will converge quickly. This characteristic is
very important for the algorithm proposed later. The two initializa-
tion methods are shown in Figs. 6 and 7. The K value is selected as 3
based on what mentioned above. (The input is still the signal
shown in Fig. 1.)

As shown in Figs. 6 and 7, the iteration has a great effect on
solving process. With zero initialization, the difference between
initial center frequency values and the frequency characters of
analog signal is so great that results in low accuracy (the fre-
quency results are different from analog signal’s) and low
calculation efficiency (the iteration number of linear initializa-
tion is 29, the iteration number of zero initialization is 183).
As mentioned above, we initialize the center frequencies as cen-
ter frequencies of s2, s2, s2, respectively. The result is shown as
Fig. 8.

As shown in Fig. 8, the customized initialization has high accu-
racy and calculation efficiency (the iteration number is only 13). So
in the algorithm proposed in this paper later, we will choose this
customized initialization and the specific method will be described
below.
3.2. Optimization method-A recursive VMD

As a variational model, VMD is much more accurate than
recursive decomposition model, such as EMD. However, the
recursive decomposition model has its unique advantage, i.e. it
can decompose signals automatically by stop criterion instead
of a predetermined decomposition level. The kernel idea of
recursive decomposition model, taking EMD as an example, is
that the input signal reduces the average of upper and lower
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Fig. 3. The result of K = 3.
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Fig. 2. The result of K = 2.
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envelope curves until a requested IMF is obtained, and this
process will repeat in order to decompose signal completely
[16]. This process is described as ‘‘peeling onions”. The upper
and lower envelope curves are usually obtained by spline inter-
polation, which will gather errors in decomposition and result in
mode mixing. Based on this analysis, we propose a recursive
VMD algorithm, which combines variational model and recursive
model. In this algorithm, IMFs are obtained by the variational
model instead of envelope curves and then the decomposition
is stopped by an appropriate criterion. With this method, the
optimized algorithm will combine the advantages of recursive
model and variational model to obtain desired results. This
model can not only restrain error accumulation of envelopes in
recursive model but also decompose signals automatically. The
details of the algorithm are described below.
3.2.1. Adjustment of the variational model
Based on the original VMD [21], a new constrained variational

problem can be achieved by setting the number of modes as
K = 1. There is only one component u, and the Formula (3) changes
into Formula (10):
min
u;x

k @t d tð Þ þ j
pt

� �
� u tð Þ

h i
e�jxt k

2

2

� �
s:t u ¼ f

8<
: ð10Þ

With the Lagrangian multipliers and quadratic penalty term,
the augmented Lagrangian in Formula (4) changes into Formula
(11):

L u;x; kð Þ : ¼ a
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pt
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� u tð Þ

� �
e�jxt
















2

2
þ k f tð Þ � u tð Þ k22

þ k tð Þ; f tð Þ � u tð Þh i ð11Þ
The quadratic problem can be solved in Fourier domain, i.e. the

Formula (5) and (6) change into Formula (12) and (13):
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Fig. 4. The result of K = 4.
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Except for this adjustment, the theory is the same as original
algorithm, and it also can be explained as a special case, in which
the number of modes is K = 1. After that, the VMD is taken as a sin-
gle Wiener filter to process input signals in order to obtain the only
one component u, and it will be the most significant feature of
input signal without any adjustment. This process will extract
components one by one in our model, which resembles the ‘peeling
onions’ process of envelopes constructing in recursive model.
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3.2.2. Optimization of the initial values of center frequencies xk

When computing the center frequenciesxk by ADMM in original
VMD, the initial values must be input in advance. As mentioned
above, Dragomiretskiy et al. [21] provided three types to select ini-
tial values: initializing the xk as 0, liner values and random values.
Among those types, the liner valuesmethod has the highest compu-
tational efficiency and stability because it is more similar withmost
frequency characters, which is very useful for the ADMM iterative
process. When K = 1, there is no liner values for initial values of xk,
which causes the results to become unstable (just like initializing
the xk as 0). As shown in Section 3.1.2, if the iterative initial values
for center frequencies are set close to the characteristic frequencies
of target components, accuracy and calculation efficiency will be
improved greatly. Because the signal components are unknown,
we choose to extract the component with the highest power in fre-
quency domain firstly. Therefore, in order to obtain initial values,
Power Spectral Density (PSD) of the input signal is calculated and
the frequency at maximum PSD is taken as the initial value.

In particularly, because of the Gibbs phenomenon [27], some-
times the maximum PSD values are the endpoints. For this prob-
lem, the first 0.5% and the last 0.5% points in frequency domain
will be ignored when processing real signals.

3.2.3. Stop criterion
To decompose signals automatically, the stop criterion must be

chosen reasonably. Huang et al. [16] proposed a SD stop criterion,
and Damerval et al. [28] proposed a stop criterion based on the
number of iterations. Those stop criterions are proposed for recur-
sive model and aren’t suitable for VMD. However, the energy differ-
ence trackingmethod proposed by Cheng et al. [29] is built based on
energy and this stop criterion is suitable for themethod proposed in
this paper. The basic assumption of this stop criterion is that the
IMFs have orthogonality property. With comprehensive considera-
tion of energy difference trackingmethod and themethod proposed
in this paper, the stop criterion is shown as follows:

Assuming that the signal f ðtÞ is made up of independent compo-
nents ukðtÞ:

f ðtÞ ¼ u1ðtÞ þ u2ðtÞ þ � � � þ unðtÞ ¼
Xn
k ¼ 1

ukðtÞ ð14Þ

The total energy of f ðtÞ is:

Ex ¼
Z 1

�1
f 2ðtÞdt ¼

Z 1

�1

Xn
k¼1

ukðtÞ
" #2

dt ð15Þ

The independent components have orthogonality property, the
formula (15) can be represented as:

Ex ¼
Z 1

�1

Xn
k¼1

ukðtÞ
" #2

dt¼
Z 1

�1
u1ðtÞdtþ

Z 1

�1
u2ðtÞdtþ . . .þ

Z 1

�1
unðtÞdt

¼E1þE2þ�� �En ð16Þ

When a component u1ðtÞ is decomposed out, the total energy
Etot composed of the energy of u1ðtÞ, i.e. E1 and the energy of the
rest, i.e. E2���n, is equal to the energy of original signal, i.e. Ex:

Etot ¼ E1 þ E2���n ¼ Ex ð17Þ
If the independent components ukðtÞ are incomplete orthogonal,

there will be error between Ex and Etot:

Eerr ¼ Ex � Etot ¼ Ex � ðE1 þ E2���nÞ ð18Þ
The smaller Eerrj j is, the orthogonality properties of IMFs better

are, the rest of signal meets the requirements of IMF better. So the
Eerrj j is taken as the criterion and when the Eerrj j is less than thresh-
old, the decomposition will stop.

3.2.4. The proposed method
Based on above procedures, the optimized VMD is given. The

flowchart of this algorithm is as shown in Fig. 9.
The specific process is as follows:

① Calculate the PSD of the input signal f and achieve the fre-
quency at maximum PSD, xini;
② Take the xini as initial value of center frequency in iteration,
and set K = 1 to get the variational model as formula (11). Com-
pute uk and xk as formula (12) and formula (13) separately.
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Fig. 9. The flowchart of the optimized VMD.
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Fig. 10. The result of optimized VMD.

Table 1
The correlation coefficients between the result and original components.

The original components s1 s2 s4

The corresponding correlation coefficients 0.9904 0.9394 0.9315
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Fig. 11. The iteration process of optimized VMD.
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③ Take the only one uk as an IMF. Take the f - uk as the new
input signal and repeat step ① and ②;
④ At the same time of decomposition, the energy difference
Eerrj j as formula (18) is calculated. When the Eerrj j is less than
the threshold, the decomposition will stop and the component
signals will be obtained automatically. Through calculation
and experiment, Eerrj j 6 ð0:7� 2:0Þ% Ex is considered as the
appropriate threshold.

3.3. Confirmation of the optimized VMD algorithm

To confirm the feasibility of this optimized VMD, we adopt this
method to decompose the analog signal shown in Fig. 1. Consider-
ing the noise, the stop criterion is set as Eerrj j 6 1:5% Ex.
When the analog signal was decomposed by original VMD, the
number of modes is set as K = 3, which confirmed the best result.
The optimized VMD decomposes the signal without setting up K,
and the results are as shown in Fig. 10.



Table 2
The main parameters of test engine.

Items Parameters

Combustion mode Spark ignition
Arrangement Inline
Number of cylinders Four
Intake method Turbocharger
Fuel injection method Direct-injection
Displacement 1.5 L
Stroke/Bore 84.7/75 mm
Power rating 110 kW/5600 r/min
Torque rating 210 Nm/2200-4500 r/min

Table 3
The main test instruments and parameters.

The instruments Model Manufacturer

Acoustic and vibration testing system SCM05 LMS
acceleration sensor 621B40 IMI SENSORS
Laptop ThinkPad T530 Lenovo
Cylinder pressure sensor GH13Z-31(24) AVL

8 F. Bi et al. /Measurement 140 (2019) 1–13
The results (without residual component) show that the opti-
mized VMD can decompose the signal into correct decomposition
level, K = 3, by the stop criterion, which confirms the feasibility
of this optimized VMD proposed in this paper. The result also
meets expected sequence in frequency domain. To validate the
accuracy of optimized VMD quantifiably, we calculate the correla-
tion coefficients between the result and original components
shown in Fig. 1. The correlation coefficients are shown in Table. 1.

As shown in Table. 1, the accuracy of optimized VMD is still
high. Besides, the optimized VMD has higher computational effi-
ciency than original VMD. The number of iterations in original
VMD with linear initialization is 29 as shown in Fig. 6. The number
of iterations in optimized VMD is 20 and the three numbers are 5,
6, 9, separately, as shown in Fig. 11.
Fig. 12. The b
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As shown in Fig. 11, the number of iterations in optimized VMD
is fewer, which means higher calculation efficiency. It also can
obtain more stable results with no mode mixing. Therefore, the
proposed method is meaningful to overcome the shortage of the
VMD and take the algorithm to decompose real signal with
unknown number of sources.
4. The experiment

The knock experiment is carried out on a turbo charged
gasoline direct-injection engine, and the basic information of this
engine is shown in Table 2. Two acceleration sensors are
installed on the cylinder head above the second and third cylin-
ders separately. A speed sensor is installed on flywheel to collect
speed signals and identity the top dead center. Four cylinder
pressure sensors are installed in all of the cylinders to collect
cylinder pressure signals, and those signals will be passed to
combustion analyzer and acoustic & vibration testing system
separately. The main instruments of this signal testing system
are shown in Table 3. Considering that the characteristic
frequency of knock is about 5–20 kHz, the sampling frequency
is set as 51.2 kHz. Microphones are put next to testing engine
and connected to a speaker to detect knock sound. The experi-
mental testing is shown as Fig. 12.

The range of engine speed is from 1200 r/min to 5600 r/min
every 400 r/min and the range of engine torque is from 70 N∙m
to 205 N∙m every 5 N∙m. Because of the high frequency of knock
in the speed range of 1400 r/min to 1600 r/min for testing engine,
the 1400 r/min and 1500 r/min working conditions are added. The
sound form speaker and the output form combustion analyzer will
be used to judge the knock and its intensity preliminarily. During
testing, knock will be controlled by spark advance angle and the
spark advance angle increases by 2� Crank Angle (CA) form normal
condition to knock appearance. However, if there is no knock until
torque decreases obviously, this working condition will be
recognized as no-knock condition.
ench test.
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Fig. 14. The pressure signal of the second cylinder.
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Fig. 15. The pressure signal of the third cylinder.
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Fig. 16. The result of optimized VMD.
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5. Analysis, comparison and discussion

In this section, the optimized VMD is used to decomposed
engine vibration signals in order to extract knock features.

5.1. The preliminary analysis of signals

The vibration signals of engine block under normal and knock
conditions are collected. A randomly selected knock signal and
its PSD are shown in Fig. 13. In this signal, the firing sequence is
4-2-1-3. The engine working condition is like this: the speed is
1600 r/min and the ignition advance is pushed forward 10� CA
compared with normal condition. The vibration signal originates
in the vibration sensor installed on the third cylinder head.

In consideration of that the main high-frequency vibration of
block is excited by the combustion pressure fluctuations in cylin-
ders, the cylinder pressure signals corresponding to vibration sig-
nals are also analyzed (it’s verification for later decomposition
results, too). The pressure signals are approached by 5 kHz high-
pass filtering. The knock cylinders are the second cylinder and
the third cylinder, and the time-domain and frequency-domain
of pressure signals are shown in Figs. 14 and 15.

As shown in Figs. 14 and 15, the frequency band of knock is
composed of some discrete frequencies between 5 kHz and
20 kHz and there is no frequency higher than 20 kHz in the
cylinder pressure signals. Based on the analysis of the engine, the
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Fig. 17. The res
frequency components higher than 20 kHz in vibration signals
are confirmed to come from turbocharger. Besides, the strong
knock in the second cylinder can be detected by vibration signals,
but the slight knock in the third cylinder can’t (that is the compo-
nents caused by the third cylinder will be covered by second cylin-
der’s). So the vibration signals should be decomposed by VMD.

5.2. Comparison of optimized VMD and EMD

The vibration signal shown in Fig. 13 is decomposed by opti-
mized VMD and EMD respectively. The results of optimized VMD
have 6 modes including residual component, and the results of
EMD has 12 modes. In this paper, all modes of optimized VMD
and the first 6 modes of EMD are shown in Figs. 16 and 17.

As shown in Figs. 16 and 17, without filtering, the results of
optimized VMD are valuable narrow-bandmodes. Besides, the cen-
ter frequencies of first 5 modes in optimized VMD are 7.7 kHz,
22.6 kHz, 18.4 kHz, 14.0 kHz, 10.1 kHz, and the residual compo-
nent is complex noise. The results can distinguish vibration caused
by normal combustion, slight knock (red circle marker in Fig. 16,
i.e. IMF3), strong knock and turbocharger clearly. In particular,
the IMF3 of optimized VMD is only caused by the third cylinder
pressure which means the slight knock in the third cylinder can
be extracted obviously. The order of component frequencies also
verifies the stability provide by customized initialization (the
energy of every component in frequency domain is from high to
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Fig. 18. The result of VMD based on search method.
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low). Compared with VMD, EMD can also detect the strong knock
in the second cylinder, but the slight knock in the third cylinder
cannot be extracted. Besides, the disturbing factor from tur-
bocharger can’t be removed. The reason is that the frequencies of
modes from VMD algorithm focused on knock characteristic fre-
quencies, which means there is less noise in modes. As to EMD,
the frequency components are complex, and there is much noise
in modes. For knock detection, it is essential to remove noise form
modes and make the knock feature obvious. To make the results
credible, we give a quantized explain as follows. Because the fre-
quency band of knock is composed of some discrete frequencies
between 5 kHz and 20 kHz, we extract the knock components of
original signal (shown in Fig. 13) by band-pass filtering form
5 kHz to 20 kHz. Based on the attention to energy in knock detec-
tion, the knock components of optimized VMD (i.e. IMF1/IMF3/
IMF4/IMF5) and EMD (i.e. IMF1/IMF2) are restructured separately
and their energy will be calculated to be compared with filtered
original signal. The results show that the energy in optimized
VMD restructure component is 81.22% of filtered original signal,
and this value for EMD is 141.25%. Considering the noise exist in
filtered original signal, the result of optimized VMD is reasonable
and advantageous to slight knock detection. However, the result
of EMD shows that there is much noise in it. This noise is mainly
from turbocharger and will cover up slight knock features. In con-
clusion, the optimized VMD is much more advantageous than EMD
in knock detection, even the accuracy is close to the detection
method using cylinder pressure.

It should be noted that we don’t use band-pass filtering to
detect knock because the bands of knock character frequencies
can’t be detected exactly. That is to say, the noise in filtered signals
is uncontrollable, which will result in difficulty for knock index and
precise control.
5.3. Comparison of optimized VMD and VMD based on search method

In [26], the authors proposed a VMDmethod that decomposed a
signal in different K values and the best K value will be selected by
the degree of frequency mixing. Our team also use a similar
method to decompose vibration signals to extract knock features
[30], which is decomposing signals with VMD in a small K value
and increasing it one by one until the center frequency differences
between neighbouring components meet a predefined threshold.
We set the threshold like this: the range of the maximum center
frequency difference is 3.0–8.0 kHz and the minimum value is
1.0–2.5 kHz. With this method, we decompose the signal shown
in Fig. 13 and there are 6 modes in this result as shown in Fig. 18.

This VMD based on search method decompose a signal with
original VMD in different parameters. The original VMD has been
proved the high accuracy [21], which means the VMD based on
search method maintains high accuracy. In particular, we also cal-
culate the energy of this results, and it is 81.15% of filtered original
signal. This is very close to the value of optimized VMD proposed in
this paper (81.22%, see the Section 5.2), which also proves the opti-
mized VMD proposed in this paper maintains high accuracy of
original VMD.

However, the VMD based on search method has low calculation
efficiency. If we set the initial K value is 3, the iterations are shown
in Fig. 19 and the iterations of optimized VMD in this paper are
shown in Fig. 20.

The optimized VMD proposed in this paper has 5 iterations (the
last component is residual), and the number of every iteration is 9,
11, 9, 20, 22 respectively with total number of 71. The VMD based
search method has 4 iterations, the number of every iteration is
191, 243, 52, 190, and the total number is 676. Even when K = 6,
the number is up to 190, which is far more than 71.



0 40 80 120 160 200
0

5

10

15

20

z
Hk/ycneu qe rFr etne

C
e hT

The Number of Iterations

IMF1
IMF2
IMF3

0 50 100 150 200 250
0

5

10

15

20

25

z
Hk/ycneuqe rFretne

C
ehT

The Number of Iterations

IMF1
IMF2
IMF3
IMF4

(a) The iterations of K=3 (b) The iterations of K=4

0 10 20 30 40 50 60
0

5

10

15

20

25

z
Hk/ycneuqerFretne

C
ehT

The Number of Iterations

IMF1
IMF2
IMF3
IMF4
IMF5

0 40 80 120 160 200
0

5

10

15

20

25

z
Hk /ycneuqerFret ne

C
ehT

The Number of Iterations

IMF1
IMF2
IMF3
IMF4
IMF5
IMF6

(c) The iterations of K=5 (d) The iterations of K=6

Fig. 19. The iterations of VMD based search method.

0 15 30 45 60 75
0

5

10

15

20

25

z
Hk/ycneuqerFretne

C
ehT

The Number of Iterations

IMF1
IMF2
IMF3
IMF4
IMF5

Fig. 20. The iterations of optimized VMD proposed in this paper.

12 F. Bi et al. /Measurement 140 (2019) 1–13
In conclusion, the optimized VMD proposed in this paper has
high calculation efficiency with high accuracy and this method is
expected to be applied to detect knock and other engine faults.
5.4. Discussion

5.4.1. Error analysis
The main errors in detecting knock by vibration signals usually

come from testing system and signals analysis algorithm.
The main error in testing system comes from acceleration sen-

sors. The acceleration sensors used in this experiment has a range
of 500 g, sensitivity of 0.02 m/s2, and transverse sensitivity of �5%.
As shown in these parameters, the error caused by acceleration
sensors is acceptable.

The main error in VMD algorithm comes from the quadratic
penalty term a and this parameter is related to bandwidth of
modes in results. In [31], the authors adjusted a after decomposi-
tion every time. In consideration of difference of different signals
and calculation efficiency, we set a fixed a value. According to
the results from previous analysis, we set a = 2200. However, this
parameter is the best value for original VMD and has not yet been
proved to be effective in this optimized VMD (although we get
accuracy results with this value). Meanwhile, we find when a
increases, the stop criterion will also increase. We think the reason
for that is with increasing of a, the noise in components will
decrease, which results in increasing energy difference. The quan-
tized relationship between a and stop criterion is complex, and it is
an important topic in our team. In this paper, these parameters are
a = 2200 and Eerrj j 6 0:7% Exseparately.

5.4.2. Universal applicability analysis
To test the universal applicability of the optimized VMD, a large

number of vibration signals are collected. In this paper, 100 signals
in various working conditions are selected randomly to be decom-
posed by optimized VMD. All results get normal combustion, light
knock and strong knock features successfully. The stop criterion is
set as Eerrj j 6 0:7% Ex, and there is no signal inappropriate for this
method in our data. The results are not shown in this paper
because of the limited space, and readers can test the universal
applicability by your own data.
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6. Conclusions and outlook

With the analysis of knock detection methods, the recursive
decomposition model is deprecated and an entirely non-recursive
variational decomposition model is introduced. However, the
number of modes in VMD should be set in advance. So an opti-
mized VMD algorithm combined recursive model, the energy dif-
ference tracking method and optimized initial values of center
frequencies is proposed. The optimized VMD can decompose sig-
nals into modes based on stop criterion instead of artificial values
set in advance.

In decomposition of analog and actual signals, the results show
that the optimized VMD achieves expected effect. Compared with
EMD and VMD based search method, the optimized VMD algo-
rithm can reduce more noise and make the knock characteristics
more obvious, which is helpful to detect slight knock to control
engine precisely. All the decomposition results show that the
optimized VMD has better accuracy, efficiency and stability.

However, the quantized relationship between a and stop
criterion is still unclear. An appropriate knock intensity index for
optimized VMD results should be developed, which will be our
subsequent works.
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Appendix A

The list of symbols
t
 Time

f
 Frequency

K
 The Number of Modes

u
 Component Signal

j
 The Imaginary Unit, j2 = �1

d
 Dirac Distribution

a
 The Balancing Parameter of the Data-Fidelity Constraint

(The Quadratic Penalty Term)

x
 The Center Frequency

k
 The Lagrangian Multiplier

xini
 The Initial Value of Center Frequency in Iteration
Appendix B

The list of abbreviations
EMD
 Empirical Mode Decomposition

EEMD
 Ensemble Empirical Mode Decomposition

STFT
 Short Time Fourier Transform

VMD
 Variational Mode Decomposition

ADMM
 Alternate Direction Method of Multipliers

IMF
 Intrinsic Mode Function

PSD
 Power Spectral Density

CA
 Crank Angle
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