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Abstract—Accurate gesture-based interactions are crucial for
enhancing the immersive experience in VR (virtual reality) sys-
tems; they in turn necessitate gesture positioning and recognition
in physical world. However, existing VR gesture recognition
methods are predominantly vision-based, incurring high compu-
tational demands and raising privacy concerns. Meanwhile, Wi-
Fi-based gesture recognition methods, deemed as promising com-
plement to vision-based ones, typically lack gesture positioning
capabilities. To this end, we propose VR-Fi, a gesture positioning
and recognition system leveraging VR(-headset)-embedded Wi-
Fi. To position gestures across different areas, VR-Fi innovates
in a frequency-hopping bandwidth expansion (FHBE) technique
to improve spatial resolution for locating a target. Additionally,
VR-Fi innovates in neural models to process the FHBE-enhanced
Wi-Fi CSI (channel state information) and enable the multi-task
requirements of the joint positioning and recognition of hand
gestures. Extensive experimental results demonstrate that VR-Fi
achieves a positioning accuracy of 94.47%, a recognition accuracy
of 92.13%, and a joint accuracy of 89.47%.

Index Terms—Wi-Fi human sensing, ISAC, localization, ges-
ture recognition, virtual reality.

I. INTRODUCTION

VR (virtual reality) systems employ gesture-based inter-
actions to enrich immersive experiences, enabling users to
intuitively manipulate digital content and interact with vir-
tual interfaces. These interactions are pivotal for tasks such
as selecting options, navigating menus, and handling virtual
objects, thereby improving the usability and accessibility of
VR [1]. Traditional controller-based manipulation, which con-
strains the natural fluidity of user movements, is increasingly
being supplanted by bare-hand control, offering a more gen-
uine interactive experience [2], [3]. This shift necessitates the
development of robust, device-free systems that can precisely
track and recognize gestures within designated areas and
convert them into meaningful VR actions. Most VR gesture
recognition methods currently in use are vision-based [4], [5],
utilizing various cameras to capture gestures. This procedure
typically involves gesture segmentation, tracking hand feature
points, estimating hand direction, and recognizing gestures.
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However, these methods may be resource-intensive, risking
hardware overload and degrading real-time performance [6].
They also present privacy concerns, as they depend on cameras
to capture and analyze user movements [7], [8]. Additionally,
these systems may encounter difficulties in achieving accurate
gesture recognition under varied lighting conditions [9], [10]
or in the presence of obstructions [11], [12].

In response to the limitations of optical vision technologies,
researchers have explored alternative non-optical approaches
for gesture recognition [13]–[15]. Among these, Wi-Fi-based
methods [16]–[19] stand out thanks to the wide deployment
of Wi-Fi infrastructure. These methods are particularly well-
suited for VR scenarios, as they eliminate the need for any
hardware modifications to existing commercial VR headsets.
Specifically, these methods monitor changes in Wi-Fi signal
characteristics to detect hand movements, with recent influ-
ential studies often employing commercial network interface
cards (NICs) to capture CSI (channel state information) for
gesture recognition. Such Wi-Fi-based systems are particu-
larly valued for their minimal computational requirements,
attributed to the sparsity of electromagnetic signals, which
facilitates the real-time responsiveness essential for sustained
immersion and seamless interaction in VR applications. Fur-
thermore, these systems operate without the need for video
recording, significantly enhancing user privacy. Building on
these strengths, Wi-Fi-based gesture recognition serves as
a valuable supplement to vision-based systems, particularly
in scenarios of limited hardware capabilities, high privacy
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Fig. 1: Vision of VR-Fi: By utilizing the FHBE technique
to enhance spatial resolutions, VR-Fi obtains necessary fre-
quency diversity for subsequent joint gesture positioning and
recognition, enabling accurate gesture recognition in a 3 × 3
grid of areas of a VR environment.
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requirements, or insufficient visual conditions.
However, the adaptation of Wi-Fi-based technologies to VR

gesture recognition presents its own set of challenges. Unlike
traditional gestures in non-VR environments, VR settings typ-
ically allow users to perform varied gestures in different areas
to fulfill various operation needs, thus necessitating an initial
determination of the area of hand’s position. Moreover, owning
to Wi-Fi’s limited capability for device-free tracking of mov-
ing objects, particularly for fine-grained hand movements,1 we
reform continuous tracking into a discrete classification prob-
lem. Specifically, considering users’ familiarity with vertical
and horizontal orientations [21], [22], organizing the reachable
gesture space into a 3 × 3 grid should enhance intuitive
and precise interactions, as shown in Fig. 1. Despite these
adaptations, whether existing Wi-Fi sensing techniques may
effectively handle joint positioning (albeit coarse-grained) and
recognition remains an open issue. This inability largely stems
from the inherent hardware constraints of Wi-Fi sensing: the
limited bandwidth and number of antennas typically available
on commercial NICs confine the spatial resolution (in both
range and bearing) achievable. Consequently, these limitations
prevent the Wi-Fi sensing system from separating gesture-
induced paths from the background, thereby hindering accurate
identification of gesture positions.

To address the challenges outlined above, we propose VR-
Fi, the first gesture positioning and recognition system in
VR environments, leveraging VR(-headset)-embedded Wi-Fi,
as depicted in Fig. 12. To handle positioning, VR-Fi inno-
vates a novel frequency-hopping bandwidth expansion (FHBE)
technique, which captures greater frequency diversity of CSI
to enhance spatial resolution. FHBE specifically involves a
channel selection algorithm to choose the optimal channels
for accurate positioning and recognition of gestures, incor-
porating precise frequency hopping control to ensure reliable
data collection via commercial Wi-Fi NICs embedded in VR
devices. Given that traditional signal processing techniques are
incapable of synthesizing FHBE-enhanced CSI samples (with
frequency diversity) into gestures and positions, VR-Fi adopts
a neural model combined with a multi-task learning strategy.
Specifically, VR-Fi employs an adaptive gating mechanism to
regulate the contributions of various expert sub-networks to
different tasks, thus achieving joint positioning and recognition
of gestures in VR environments. In summary, our major
contributions are:

• We propose VR-Fi as the first VR embedded Wi-Fi
sensing system that simultaneously implements gesture
positioning and recognition.

• To achieve accurate gesture positioning, we design an
FHBE technique for VR-Fi to captures greater frequency
diversity using commercial Wi-Fi NICs with a limited
number of antennas.

• We develop novel deep learning models with a multi-task
learning strategy to address the challenge of synthesizing

1For example, Widar2.0 [20] (arguably the best to our knowledge) has 20%
errors exceeding 1 m, rendering it hardly be usable for VR applications.

2Although shown in single-user scenario, VR-Fi can be readily adapted
to multi-user environments by leveraging the near-field domain effect, as
explored in the multi-user-focused study, MUSE-Fi [23]

FHBE-enhanced channel samples, ultimately enabling the
joint positioning and recognition of hand gestures.

• We implement the first prototype of VR-Fi on commercial
VR headset, and conduct extensive evaluations on it
to demonstrate VR-Fi’s excellent capabilities in gesture
positioning and recognition.

The rest of our paper is structured as follows. Sec. II
introduces the background and motivation of VR-Fi. Sec. III
elaborates on the system design of VR-Fi. Sec. IV and Sec.
V explain VR-Fi’s implementation and report the extensive
evaluations. Related works and discussion of VR-Fi are briefly
discussed in Sec. VI, followed by the conclusion of our paper
in Sec. VII.

II. BACKGROUND AND MOTIVATION

In this section, we first establish a basic model for Wi-
Fi sensing and analyze the relationship between CSI with
range and bearing under ideal antenna hardware conditions.
Subsequently, we derive a simplified sensing model tailored to
the constraints of commercial NICs to elucidate why existing
gesture recognition methodologies fall short in achieving ges-
ture positioning. Finally, we compare the gesture positioning
results across various bandwidths to demonstrate the potential
benefits of bandwidth expansion for gesture positioning.

A. Wi-Fi Sensing Basic
Assuming a Wi-Fi sensing system with a transmitter-

receiver (Tx-Rx) pair, we start by introducing a CSI model
to establish the foundation for gesture positioning. Fig. 2
illustrates the Rx as an ideal antenna array with M elements
arranged vertically and N elements arranged horizontally. The
spacing between adjacent antennas is dz and dy, respectively.
The CSI model involves parameters (τ, θ, ϕ), representing the
time of flight (ToF), azimuth direction of the angle of arrival
(AoAA), and elevation direction of the angle of arrival (AoAE)
respectively, as determined by the range and bearing of the
sensing subjects. Considering L distinct propagation paths of
the Wi-Fi orthogonal frequency division multiplexing (OFDM)
signal with K subcarriers, the received CSI H = [hm,n,k] can
be expressed as follows:

hm,n,k =
∑L

l=1αm,n,k,l · hToF
k,l · h

AoAA

n,l · hAoAE

m,l , (1)

where hToF
k,l , hAoAA

n,l , and hAoAE

m,l are given by

hToF
k,l = e−j2π(fc+k∆f)τl ,

hAoAA

n,l = ej2π(n−1)dy cos θl sinϕl(fc+k∆f)/c,

hAoAE

m,l = ej2π(m−1)dz sin θl(fc+k∆f)/c.
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Fig. 2: Rx antenna array
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Fig. 3: AoA spectrum with different number of antennas.

where m, n, k, and l respectively index the vertical antenna,
horizontal antenna, subcarrier, and path, α represents channel
gain, fc and ∆f respectively denote channel centre frequency
and subcarrier bandwidth, and c is the speed of light.

B. Infeasible Gesture Positioning of Prior Art

Existing gesture recognition works mainly used commercial
NICs to capture dynamic features such as Doppler Frequency
Shift (DFS) and phase variations to recognize gestures [17],
[24], [25]. However, gesture positioning requires accurate
acquisition of static features that characterize the position
(e.g., ToF and AoA). In this subsection, we further explore
the capability of existing Wi-Fi gesture solutions to estimate
ToF, AoAA, and AoAE. Sec. II-A describes an antenna array
under the assumption of ideal hardware conditions. However,
typical real-life commercial NICs are equipped with only 2 to
4 linearly distributed antennas. In this scenario, with such N
antennas, Eqn. (1) simplifies to:

hn,k =
∑L

l=1αn,k,l · hToF
k,l · h

AoAA

n,l . (2)

It is evident that in this configuration, the capability to
estimate the elevation angle of arrival (i.e., AoAE) is absent.
This limitation significantly impairs the system’s ability to
accurately determine the vertical position of gestures.

For the resolution of the azimuth direction of AoA (i.e.,
AoAA), existing AoA-based localization systems typically
employ multiple antennas to find the intersection of AoAs [26].
The resolution of AoA is primarily determined by the number
of antennas. Increasing the number of antennas results in nar-
rower angle beams, thereby enhancing the ability to distinguish
between two adjacent angle signals, as illustrated in Fig. 3.
Fig. 3(a) illustrates that with eight antennas, it is possible to
separate the target signal from interference signals, accurately
capturing the angle matching the ground truth. However, in
Fig. 3(b), using only four antennas—the maximum number
available on commercial NICs—results in signals merging.
Consequently, due to the limited number of antennas in
commercial NICs, existing Wi-Fi gesture recognition methods
can only provide limited bearing resolution3.

Next, we discuss the capability of the aforementioned Wi-Fi
system to estimate ToF. According to [27], the temporal resolu-
tion of a radio system follows the formula ∆τ = 1/B, where
B represents the total sensing bandwidth. This implies that
the range resolution of human gestures, ∆R = c∆τ = c/B,

3Even attempts to estimate AoAE by rearranging the antenna array (e.g.,
2×2 configuration), the limited number of antennas in the elevation direction
still constrains resolution.
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Fig. 4: Gesture positioning under different Wi-Fi bandwidth.

is directly proportional to the bandwidth B. To distinguish
the 3 × 3 grid of areas depicted in Fig. 1 to achieve gesture
positioning, decimeter-level resolution is generally required,
given the typical range of hand movements. Therefore, the
required bandwidth B needs to be approximately 1 GHz.
However, existing Wi-Fi gesture recognition works often rely
on the Wi-Fi 5 protocol, which offers a bandwidth of only
20 MHz, significantly below the bandwidth requirement for
accurate ToF estimation. As a result, these systems struggle to
accurately estimate the ToF of gesture-induced signal paths.

In conclusion, the range resolution and bearing resolution
derived from the ToF and AoA terms in Eqn. (2) are in-
sufficient for accurate hand positioning. To further illustrate
this point, following the experimental setup in Sec. IV-2, we
collect CSI data across 3 × 3 grid of gesture positions using
the 20 MHz sensing bandwidth of existing proposals. We
then apply the feature extraction model from Widar3.0 [17],
followed by a fully connected layer for gesture positioning.
As shown in Fig. 4(a), the average accuracy across various
positions is only 57.1%, highlighting the significant limitations
of current methods in precise gesture positioning. Therefore,
it is imperative to develop innovative approaches to effectively
overcome such limitation for VR scenarios.

C. Bandwidth Expansion for Gesture Positioning

Considering that gesture positioning requires an accurate
estimation of the hand’s range and bearing, enhancing its
resolution becomes a critical task. As previously noted, the
resolution of ToF is linearly related to the sensing bandwidth;
thus, a larger bandwidth enables a better differentiation of ToFs
along different paths. Moreover, while the bearing resolution
is dependent on the number of antennas, the estimation of
AoAA can still benefit from a wider bandwidth. This is because
improving the resolution of dy cos θl sinϕl/c of hAoAA

n,l (which
also is a temporal component) results in higher precision in
AoAA estimation. Additionally, in commercial NIC configura-
tions with linear antennas, although AoAE cannot be estimated
at the physical layer, gestures at different positions within
the 3 × 3 grid can result in unique combinations of ToF
and AoAA in the received signals. Therefore, increasing the
sensing bandwidth in Wi-Fi systems can significantly enhance
the spatial resolution available for accurately estimating the
range and bearing of hand gestures, potentially establishing a
viable solution for positioning gestures in various areas.

To further validate this point, we present the accuracy of
gesture positioning under the maximum directly accessible
bandwidth of 160 MHz, as depicted in Fig. 4(b). The average
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accuracy across various locations is 67.5%, which underscores
the effectiveness of increased bandwidth in enhancing the
accuracy of gesture positioning, compared to the 20 MHz
results shown in Fig. 4(a). However, a sensing bandwidth of
160 MHz represents the current upper limit achievable on
mature commercial Wi-Fi hardware and still falls short for
highly accurate identification of gesture positions. Therefore, it
is crucial to explore methods to further expand the bandwidth
to achieve precise gesture positioning.

III. VR-FI SYSTEM DESIGN

Our VR-Fi is specifically designed for accurate gesture po-
sitioning and recognition in VR scenarios with extended Wi-Fi
sensing bandwidth. VR-Fi consists of two major components,
as shown in Fig. 5:

• Frequency-hopping Bandwidth Expansion: This tech-
nique is meticulously designed to expand the Wi-Fi sens-
ing bandwidth. It integrates an optimal channel selection
algorithm and employs precise frequency-hopping control
to ensure effective and reliable data collection.

• MTPG-Net with Multi-task Learning: The model per-
forms feature extraction, eliminates unknown interfer-
ence, and employs various expert sub-networks to differ-
ent tasks, thus achieving joint positioning and recognition
of gestures in VR scenarios.

A. Frequency-hopping Bandwidth Expansion (FHBE)

Intuitively, expanding the sensing bandwidth B can be
understood as increasing the number of subcarriers in Eqn.(1)
and Eqn.(2), thereby enhancing frequency diversity for al-
gorithms estimating range and bearing. A straightforward
approach to achieving this is continuous channel stitching [28],
[29]. However, this method is impractical due to several
limitations: (1) the unavailability of a large number of channels
at all times, (2) the time-consuming sampling process, which
exceeds the coherence time budget, and (3) the computational
complexity of the stitching procedure [30]. Fortunately, ac-
cording to compressed sensing principles [31] and considering
the sparse nature of many physical phenomena, it is unnec-
essary to acquire complete and redundant information—that
is, continuous, full bandwidth—for the sensing of a single
physical phenomenon. This insight motivates us to explore the
feasibility of using a limited number of channel samples to re-
construct information that traditionally requires full-bandwidth
sensing for accurate localization, thereby overcoming the
aforementioned challenges of continuous channel stitching.

Switch
Channel

Synchronize
Hopping

Channel
Sampling

2.4 GHz 5 GHz 6 GHz
Frequency-hopping Control

FHBE

Optimal Channel Selection

MTPG-Net

Experts

VR AP

Fig. 5: VR-Fi system overview.

Specifically, FHBE of VR-Fi implements a discrete hopping
strategy across all standard channels specified by the IEEE
802.11ax Wi-Fi protocol to extend the sensing bandwidth,
thereby enhancing the spatial resolution of gesture position-
ing. In terms of channel selection, this strategy theoretically
allows for the free choice of any channel, contingent on
their availability at runtime. Despite this flexibility, VR-Fi has
meticulously devised an optimal channel selection algorithm,
engineered to ensure that the selected channels maximize
frequency diversity for the subsequent MTPG-Net tasked with
performing joint gesture positioning and recognition, thereby
achieving high accuracy in both tasks. Moreover, this tech-
nique necessitates sampling only a few discrete channels, in
contrast to utilizing continuous full bandwidth. Despite the
minimal channel requirements, given the constraints of chan-
nel coherence time budgets [32], we have developed a precise
hopping control mechanism to ensure that the commercial
Wi-Fi NIC embedded in VR devices can rapidly acquire the
necessary number of channel CSIs.

1) Optimal channel selection algorithm: The up-to-date
Wi-Fi protocols (such as 802.11ax) accommodate the 2.4GHz,
5 GHz, and 6 GHz bands. Considering the diverse usage
across different countries and regions, we have selected 97
commonly used channels, each with a bandwidth of 20 MHz,
as frequency-hopping candidates. They include 13 channels
between 2412-2472MHz, 8 channels from 5180-5320MHz, 12
channels spanning 5500-5720 MHz, 5 channels within 5745-
5825MHz, and 59 channels from 5955-7115MHz. Initially, the
VR headset as Rx initiates gesture positioning and recognition
commands, and the Tx access point (AP) and the Rx perform
a sweep of all candidate channels to identify those available
in the current environment (not occupied by other devices
or reserved for special purposes). Additionally, the CSI of
each candidate is recorded, providing critical input for the
subsequent channel selection algorithm.

To make efficient use of the limited selection of available
channels, we develop an optimal channel selection algorithm,
as shown in Algorithm 1. Considering that closely spaced
channels exhibit similar multipath propagation characteristics
and environmental reflection and diffraction properties, the
differences in CSI are minimal [33], [34]. Consequently,
the frequency diversity they can provide is limited. The
channel selection algorithm aims to prioritize channels with
larger frequency separation and more distinct CSI differences,
thereby avoiding information redundancy. The effectiveness
of this selection strategy is further validated in Sec. V-C2.
The algorithm begins by generating an initial set of candidate
channel combinations P , where each combination C consists
of Nc randomly selected channels from the available pool
Cavail. For each combination C ∈ P , a score D(C) is computed,
representing the total pairwise Euclidean distance among the
selected channels. This score can reflect the degree of distinc-
tiveness in CSI values among the channels [32] and serves
as a measure of their frequency diversity. The algorithm then
selects the top k combinations with the highest scores, denoted
as Pretain, for further refinement.

To further enhance the selected combinations, the algorithm
applies an adjustment process. For each C ∈ Pretain, the algo-
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Algorithm 1: Optimal channel selection algorithm
Input: Available channels Cavail; CSI data CSIc;

Number of channels to select Nc.
Output: Optimal channel set Copt.

1 Initialize: P ← {C1, C2, . . . , Cm}, where Ci are
randomly selected sets of size Nc from Cavail.

2 for each iteration do
3 foreach C ∈ P do
4 D(C)←

∑N−1
i=1

∑N
j=i+1 ∥CSIci − CSIcj∥2;

5 end
6 Pretain ← Top-k(P,D);
7 Padjusted ← Adjust(Pretain,Cavail);
8 Pnew ← Pretain ∪ Padjusted; P ← Pnew;
9 end

10 Copt ← argmaxC∈P D(C);
11 Function Adjust(Pretain, Cavail):
12 Padjusted ← ∅;
13 foreach C ∈ Pretain do
14 cswap ← argminc∈C

∑
j∈C\{c} ∥CSIc − CSIj∥2;

15 c′ ←
argmaxc′∈Cavail\C

∑
j∈C\{cswap} ∥CSIc′−CSIj∥2;

16 C←(C \ {cswap}) ∪ {c′};
17 Padjusted←Padjusted ∪ {C};
18 end
19 return Padjusted;
20 end

rithm identifies the channel cswap with the smallest contribution
to D(C), which is determined by the sum of its pairwise
differences in CSI with other channels in C. This least-
contributing channel is replaced with a new channel c′ from
Cavail \ C, where \ represents set subtraction. The replacement
channel is selected to maximize the updated score D(C). The
refined combinations are then merged with the retained ones to
form an updated set Pnew, which undergoes further evaluation
and refinement in subsequent iterations. This iterative process
continues until a termination condition is met, such as a
predefined number of iterations or the stabilization of D(C).
Finally, the channel combination Copt with the highest score is
selected as the optimal solution. By systematically evaluating
and refining channel combinations, this algorithm strategically
places channels near boundaries while maintaining sufficient
spacing to mitigate potential signal overlap. This ensures that
the selected channels provide maximum frequency diversity
and minimal information redundancy.

2) Precise frequency-hopping control: Following the op-
timal channel selection, FHBE of VR-Fi progresses to the
frequency hopping stage. Upon receiving a hopping command
from the VR headset on the Rx side, the Tx (AP) initiates
frequency hopping by sending a probe frame on the first
optimal channel to synchronize the hopping with the Rx. The
Rx responds immediately upon signal reception and samples
the CSI of the current channel. Following the Rx’s response,
the Tx promptly transitions to the next optimal channel. VR-
Fi cyclically hops through optimal channels, repeating this

behavior and conducting channel sampling4. Subsequently,
according to the duration of gestures, FHBE compiles the
CSI samples from Ns cycles across Nc optimal channels into
Ns×Nc CSI samples, which are utilized as training data for the
subsequent MTPG-Net. Notably, each channel hopping occurs
within several milliseconds, allowing the required samples to
be collected with appropriate delay. If the Rx fails to respond
within the allocated time, the Tx logs the failure and resends
the signal on the current channel; if the failure persists, the Tx
reverts to the initial optimal channel for a reset. Considering
that the channels may suddenly become unavailable (possibly
occupied by other devices), FHBE will, after several resets,
rescan and re-execute the optimal channel selection algorithm
to effectively restore frequency-hopping operations.

B. MTPG-Net with Multi-task Learning

After collecting optimal channel samples, achieving accu-
rate gesture positioning and recognition remains a significant
challenge. Traditional signal processing methods, inherently
designed for continuous frequency signals within a single
channel [37], are unsuitable for FHBE-enhanced CSI samples,
which span a broad frequency range with discrete frequency
diversity [30]. Even if processed independently, no existing
approach effectively synthesizes such processed signals from
irregularly distributed discrete channels into meaningful ges-
tures. In addition, beyond common issues such as noise and
channel fading, the collected samples also contain numerous
random and unknown parameters. A critical factor is carrier
phase offset (CPO), which may vary randomly with each
channel hop [38]. For channel samples acquired through
multiple samplings, the cumulative randomness can obscure
the sensing information embedded in these samples [39].

Fortunately, the universal approximation theorem [40] al-
lows us to employ a well-trained neural network to approxi-
mate such mapping functions, thus offering an effective tool
for addressing the challenges posed by various frequency
diversities and unknown parameters. In the context of VR
scenarios, VR systems need to simultaneously capture the
user’s gestures and hand positions to ensure prompt and pre-
cise responses. This necessitates the implementation of a joint
network output for both gesture positioning and recognition.
Therefore, we implement MTPG-Net with Multi-task Learning
scheme. This model consists of four main modules: spatial
feature extraction, temporal modeling, expert weighting, and
task-specific components, as shown in Fig. 6. MTPG-Net
operates at the millisecond level during the inference phase,
combined with the millisecond-level channel hopping time
discussed in Sec. III-A2, thus significantly enhancing the real-
time sensing capabilities of VR-Fi.

1) Spatial feature extraction module: This module, func-
tioning as both a feature extractor and a trainable matching
filter, is designed to mitigate hardware-related disturbances or
biases within the extracted features. It leverages DenseNet [41]

4Notably, since conventional Wi-Fi sensing typically utilizes a single frame
for sensing while also carrying data traffic [35], [36], VR-Fi ensures seamless
operation by segmenting the same data payload across all hopping frames,
preventing interruptions to default Wi-Fi communications.
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Fig. 6: MTPG-Net: One-stop model for joint gesture position-
ing and recognition with Multi-task Learning.

for its superior feature extraction capabilities and SKNet [42],
noted for its attention-dense architecture, to serve as effective
matching filters that minimize noise and eliminate interference.
Additionally, the module combines these filtered results with
the input data to concentrate key channel information for
computational efficiency while preserving the availability of
model gradients. To further mitigate variance drift during the
feature extraction and filtering processes, batch normalization
is specifically employed for regularization. Denoting DenseNet
by D(·), SKNet by S(·), the spatial feature vector can be
represented as:

xsf = [x,S(D(x)], (3)

where x indicates the input of Ns ×Nc CSI sequence.
2) Temporal modeling module: Beyond local spatial fea-

tures, the input CSI sequences also encapsulate the tempo-
ral dynamics of gestures. Therefore, the temporal modeling
module employs Gated Recurrent Units (GRUs) [43], which
are adept at learning long-term dependencies with fewer
parameters, thus optimizing training on limited datasets. This
module is specifically designed to extract dynamic features of
gestures across multiple Ns temporal cycles, enhancing the
model’s ability to discern temporal patterns within gesture
data. Denoting GRU by G(·), then the temporal feature vector
can be shown as:

xtf = G(Flatten(xsf)), (4)

where Flatten refers to the process of reshaping the multi-
dimensional vector after extracting the spatial feature into a
one-dimensional vector.

3) Expert weighting module: This module adopts a multi-
task learning scheme to enhance learning outcomes and gen-
eralization across the related tasks of gesture positioning and
recognition. By concurrently training these tasks, it leverages
shared model parameters and feature representations, facili-
tating the transfer of relevant information between tasks and
reducing the risk of overfitting [44], [45]. Drawing from the
Mixture-of-Experts (MoE) model [46], this module includes
three specialized networks: Positioning Expert, Shared Expert,
and Recognition Expert. Rather than using outputs directly
for task prediction, an adaptive gating mechanism adjusts the
outputs’ combination and weighting, dynamically refining the

representations for each task based on the input characteristics
and task requirements, thus optimizing processing efficiency.

Specifically, the adaptive gating networks are linear trans-
formations of the input of the module with a softmax layer:

Sk = Softmax(Wkx
tf), (5)

where Wk ∈ R2×d is a trainable matrix, k represents the
task index (1 for positioning, 2 for recognition), and d is
the dimension of the feature xf . The output of the gating
mechanism is expressed as:

xg
k = S1kEs(x

tf) + S2kEt(x
tf), (6)

where Et is the respective task-specific experts (Ep for k =
1 and Er for k = 2). By adaptively assigning weights to
different experts, this module allows each expert to focus on
learning distinct knowledge efficiently without interference.

4) Task-specific module: Finally, the task-specific module
processes the gated, weighted outputs from various experts
through multiple fully connected layers to generate the final
predictions for their respective tasks. The prediction for task
k is formulated as:

yk = Tkx
g
k, (7)

where Tk denotes the task-specific network of task k.
5) Joint loss optimization: During the multi-task learning

training phase, we utilize a joint loss function for back-
propagation to update the model parameters. We denote the
parameters of the models in the Spatial Feature Extraction,
Temporal Modeling, and Expert Weighting modules as θs. θk
is task-specific parameters of task k. The training procedure
is summarized as follows:

(θ̂s, θ̂1, . . . , θ̂K) = argminθs,θ1,...,θk
∑K

k=1 ωkL(θs, θk), (8)

where ωk is the task-specific parameter of task k and L(θs, θk)
is the cross-entropy losses between yk and ground truth.

IV. PROTOTYPE AND EXPERIMENT SETUP

In this section, we provide a detailed introduction to the
implementation of the VR-Fi prototype, explaining its key
components and deployment configuration. Additionally, we
outline the experimental setup, including the environments,
participants, and specific procedures designed to evaluate VR-
Fi’s performance comprehensively. To ensure rigorous analy-
sis, we introduce two state-of-the-art baseline methods in Wi-
Fi sensing as reference points to benchmark VR-Fi’s gesture
recognition and positioning capabilities.

1) Prototype of VR-Fi: VR-Fi is deployed across a VR
headset and an AP, each equipped with an Intel AX210
NIC [47]. VR headset, functions as the Rx, while the AP
serves as the Tx. This Wi-Fi NIC has two antennas and
supports all channels mentioned in Section III-A1. VR-Fi
utilizes a single transmission and dual reception configuration,
where only one transmitting antenna is used at AP, reducing
dependency on physical hardware and minimizing costs. In the
optimal channel selection algorithm, we set m = 30, k = 10,
and the number of iterations to 200. We utilize the PicoScenes
platform [48], and a custom plugin to implement the FHBE
technique, to collect FHBE-enhanced channel samples. We set
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Fig. 7: Experiment setting examples: (a) training environment
(b) a layout of 9 gesture areas.

Nc = 4 and Ns = 15 according to the frequency-hopping
time and gesture duration. These CSI channel samples are then
parsed into their real and imaginary parts and concatenated as
input to MTPG-Net. MTPG-Net is implemented within the Py-
Torch 1.7.1 environment and contains about 4.3 million model
parameters, which is compatible with common commercial
mobile processors in VR-headset [49].

2) Experiment Setup: We recruit 8 subjects, consisting of
five males and three females, to conduct experiments across
six different environments: meeting room (MR), auditorium
(AD), classroom (CR), library (LB), office (OF), and study
room (SR). For training purposes, we utilize data collected
exclusively in the MR, and conduct tests in the remaining
environments. The subject wears the VR headset, and the AP
is placed on the opposite side of the room, as depicted in
Fig. 7(a). We define the 3 × 3 grid of areas based on the
subject’s shoulder joint as the center. When the arm is raised,
the four outermost vertices are positioned at ±45◦ in the
azimuth direction (left and right) and simultaneously at ±45◦
in the elevation direction (upward and downward) respectively.
The distance between two outermost points is equally divided
into three segments, resulting in nine regions as follows: top-
left (i), top-center (ii), top-right (iii), middle-left (iv), center
(v), middle-right (vi), bottom-left (vii), bottom-center (viii),
and bottom-right (ix), as illustrated in Fig. 7(b). Subjects
perform six distinct gestures, including push-pull (PP), up-
down (UD), sweeping (SW), drawing a circle (DC), drawing
a zig-zag (DZ), and drawing a cross (DX), 300 times with
both the left and right hand at each of the nine designated
areas. These experiments have strictly followed our IRB.

3) Baseline: Given the lack of existing Wi-Fi sensing
research that realizes gesture positioning and recognition con-
currently, we refine two types of gesture recognition meth-
ods as baselines: the BVP-based method and the CSI-based
method. The representative and influential frameworks for
these methods are Widar3.0 [17] and WiGesID [50] respec-
tively. Specifically, Widar3.0 extracts a domain-independent
feature, known as body coordinate velocity (BVP), from the
Doppler frequency shift (DFS) spectrum of raw CSI mea-
surements for gesture recognition. Concurrently, we adopt
the gesture feature extraction model from WiGesID as our
baseline for another choice to process raw CSI data directly.
We collect the 20MHz CSI data as utilized in both Widar3.0
and WiGesID, adhering to the experimental setup outlined in
Section IV-2. For gesture positioning, we modify the final fully
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Fig. 8: Overall performance of VR-Fi.

connected layer of these models to output gesture positions.
We strictly adhere to the model processes established in each
framework to train separately for gesture recognition and
positioning, thereby obtaining distinct results for each task.

V. EVALUATION

In this section, we conduct a comprehensive evaluation of
VR-Fi’s capabilities, focusing primarily on its essential func-
tions of joint gesture positioning and gesture recognition. We
start with an overall investigation into VR-Fi’s performance
for the two tasks. Subsequently, VR-Fi is compared with two
baselines to highlight its superior gesture positioning capabil-
ity. Furthermore, we examine the influence of various practical
factors on VR-Fi’s performance. An ablation study is then
conducted to analyze the contributions of key components, to
the overall system performance. Finally, we extend VR-Fi to
support simultaneous gesture positioning and recognition, with
an in-depth assessment of its recognition accuracy across 10
gestures performed in different directions.

A. Overall Performance

In this section, we present the overall accuracy of VR-
Fi, detailing both gesture positioning and gesture recogni-
tion accuracies. Fig. 8(a) illustrates the confusion matrix
for VR-Fi identifying different gesture positions, showing an
average recognition accuracy of 94.47%. Moreover, VR-Fi
maintains a consistently high accuracy, exceeding 93% across
all positions. Notably, the fifth position—corresponding to the
center (v)—exhibits slightly lower accuracy. This reduction
in accuracy is intuitive, as each position tends to be most
frequently confused with its adjacent positions, and the fifth
position is centrally located. Despite this inherent confusion,
the high average accuracy and minimal variance demonstrate
VR-Fi’s exceptional capability in gesture positioning.

Subsequently, Fig. 8(b) presents the confusion matrix for
VR-Fi in recognizing six types of gestures, indicating an
average recognition accuracy of 92.13% with consistently
high accuracies above 89%. It is observed that gestures such
as “drawing a circle”, “drawing a zig-zag”, and “drawing
a cross” exhibit slightly lower accuracies. This disparity is
mainly attributable to the complex nature of these gestures,
which involve movements in both horizontal and vertical two
directions, contrasting with the other three simpler unidirec-
tional gestures. Despite some fluctuations, VR-Fi effectively
recognizes a diverse range of gestures.
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Fig. 9: Performance of BVP-based method.

In contrast, the performance of the two baselines of BVP-
based and CSI-based in gesture positioning is unsatisfactory,
as shown in Fig. 9(a) and Fig. 10(a), with accuracies of only
51.76% and 58.31%, respectively, and displaying significant
variance. The superior performance of VR-Fi compared to
the baselines can be attributed to the implementation of our
unique FHBE technology, which substantially increases the
Wi-Fi sensing bandwidth. This enhancement provides more
frequency diversity of range and bearing on gesture positions.
Moreover, the higher positioning accuracy of the CSI-based
method over the BVP-based method stems from the fact
that when BVP is extracted from raw CSI, essential domain
features, including gesture position features, are abstracted
away, making it more difficult to identify gesture positions.

Next, Fig. 9(b) and Fig. 10(b) illustrate the accuracies of the
two baselines in gesture recognition. The BVP-based method
achieves an accuracy of 76.68%, exhibiting relatively large
variance among different gestures. Notably, the performance
is considerably lower than that previously reported in Widar3.0
[17]. This discrepancy is largely attributed to the VR-Fi
setup, which is deployed on a single Wi-Fi communication
link to meet VR scenarios and significantly reduce hardware
dependencies, whereas Widar3.0 requires at least three com-
munication links to achieve its reported performance.

In contrast, the CSI-based method shows a gesture recog-
nition accuracy of 89.12%, with higher consistency across
different gestures. The discrepancy between the two baselines
is due to the BVP extraction process, which not only removes
position information but also inadvertently reduces gesture fea-
tures. Moreover, compared to the CSI-based baseline, VR-Fi
shows a certain degree of improvement in gesture recognition.
This enhancement is primarily due to VR-Fi’s implementation
of FHBE technology, which expands the sensing bandwidth
and thereby increases the frequency diversity available for ges-
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Fig. 10: Performance of CSI-based method.

ture recognition. Furthermore, VR-Fi’s MTPG-Net employs
multi-task learning scheme, effectively leveraging the potential
connections between the two tasks to enhance the accuracy of
both gesture positioning and recognition.

B. Impact Factors

1) Environments and Subjects: To demonstrate the cross-
environment and cross-subject generalizability of VR-Fi, we
assess its gesture positioning and recognition accuracy on
unseen subjects across five different unseen environments.
Notably, in each environment, we apply the optimal channel
selection algorithm separately to identify the optimal channels.
As illustrated in Fig. 11, the results reveal that the average
accuracies for gesture positioning and recognition with VR-
Fi are 89.05% and 86.37%, respectively, across various envi-
ronments, and 89.33% and 86.94% across different subjects.
Concurrently, these figures highlight high consistency in per-
formance, adequately demonstrating the robust generalizability
of VR-Fi across diverse environments and subjects.

This broad generalizability is partly attributable to the en-
hanced resolution stemming from expanded bandwidth, which
more effectively distinguishes gesture-induced paths from the
background. Simultanously, the predominance of near-field
channel variations, induced by gestures within the proximity
of the VR headset, significantly mitigates the impact of distant
interferences [23]. Additionally, we observe that while the
training and testing channels may differ across environments,
the impact on accuracy remains minimal. This is due to the
optimal channel selection algorithm, which ensures a balance
between proximity to boundaries and inter-channel isolation.
As a result, the CSI characteristics of training and testing
channels remain relatively similar, minimizing discrepancies
and preserving positioning and recognition accuracy.

In contrast, the two baselines all display gesture positioning
accuracies below 43% in varying environments and subjects,
as depicted in Fig. 11(a) and Fig. 11(c), rendering them nearly
ineffective for cross-environment and cross-subject applica-
tions. Furthermore, we evaluate the original gesture recogni-
tion capabilities of the baselines under diverse conditions of
environments and subjects. Fig. 11(b) and Fig. 11(d) show
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Fig. 11: Impacts of environment and subject.
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Fig. 12: Impacts of usage of the left or right hand.

that the BVP-based method achieves an accuracy near 60%,
while the CSI-based method’s accuracy shows even lower,
both of which are unsuitable for cross-domain applications.
The poor performance of the former is attributed to the limited
communication links in VR settings, while the latter suffers
due to its model lacking generalization capability.

2) Left or right hand: We further evaluated the adaptability
of VR-Fi in accommodating left-hand versus right-hand usage.
Fig. 15 illustrates that the average accuracies for gesture
positioning with VR-Fi are 94.15% for the left hand and
94.78% for the right hand. The average accuracies for gesture
recognition are 91.94% for the left hand and 92.33% for the
right hand. The two baselines similarly exhibit comparable
accuracy performances, as previously mentioned in Sec. V-A.
These findings confirm that VR-Fi effectively accommodates
either hand for gesture positioning and recognition, signifi-
cantly enhancing the flexible control and immersive experience
for users in VR environments. Given the consistently poor per-
formance of the baseline, we will exclude it from subsequent
evaluations for comparison.

3) Distance of LoS: We further evaluate the performance
of VR-Fi when the user’s location varies at different distances
from the AP (i.e., distances of Line-of-Sight (LoS)). In this
evaluation, subjects are asked to stand at five different loca-
tions without fixed objects (e.g., tables or chairs) at distances
ranging from 1 m to 10 m from the AP. The results, as shown
in Fig. 13(a) and Fig. 13(b), indicate that under consistent LoS
conditions, the accuracy of gesture positioning and recognition
remains relatively stable, exhibiting only minor fluctuations of
less than 2% across different locations. Simultaneously, as the
LoS distance increases, the performance of VR-Fi shows a
slight decline due to greater signal attenuation and increased
interference over longer propagation paths. Despite this, even
at the upper limit of common indoor distances (10 m), VR-
Fi continues to deliver outstanding performance, maintaining
gesture localization and recognition accuracy close to 90%.
These findings demonstrate VR-Fi’s ability to adapt effectively
to users at varying locations within an indoor environment.
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Fig. 13: Impacts of distance of LoS.
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Fig. 14: Impacts of gesture duration.

4) Gesture duration: We next investigate the impact of
varying gesture durations (i.e., gesture speeds) on the perfor-
mance of VR-Fi. Fig. 14(a) and Fig. 14(b) illustrate VR-Fi’s
gesture positioning and recognition accuracy, respectively, for
durations ranging from 1.5 s to 3.5 s. As observed, gesture
positioning accuracy exhibits only a slight decrease as gesture
speed increases. This minor decline can be attributed to
the reduced sampling data caused by faster gestures, which
introduces more uncertainty. On the other hand, gesture recog-
nition accuracy experiences a more noticeable drop with faster
gestures. This is because gesture recognition relies heavily on
detecting dynamic changes in motion, and faster gestures are
more likely to cause confusion. Nonetheless, it is worth noting
that even at the fastest gesture speed of 1.5 s—representing
the upper limit for most users—VR-Fi achieves an accuracy
exceeding 86%. These findings clearly demonstrate VR-Fi’s
robust adaptability to varying gesture speeds, ensuring reliable
performance across users’ changing interaction habits.

5) Distance of Interference: We next investigate the impact
of interference at varying distances on the performance of
VR-Fi. Specifically, A fan measuring 40 cm × 40 cm and
1.2m in height is used as the interference source. The distance
between the fan and the subject is varied from 0.5 m to 2.5 m.
The results for gesture positioning and recognition accuracy
are presented in Fig.15(a) and Fig.15(b), respectively. The
results indicate that as the interference source moves closer,
both gesture positioning and recognition accuracy experience
a certain degree of decline. However, even at the closest
interference distance of 0.5m, VR-Fi maintains accuracy levels
exceeding 84.7% for gesture positioning and 82.1% for gesture
recognition. This robustness is primarily attributed to VR-Fi’s
enhanced resolution, derived from its expanded bandwidth,
which allows it to effectively differentiate between gesture-
induced paths and interference. These findings underscore VR-
Fi’s resilience to interference, even in challenging scenarios
with proximal interference sources.

6) Direction of subject: We next investigate the impact
of the subject’s orientation on the performance of VR-Fi.
Specifically, participants were asked to rotate from directly
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Fig. 15: Impacts of distance of interference.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3557561

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Nanyang Technological University Library. Downloaded on April 09,2025 at 01:26:04 UTC from IEEE Xplore.  Restrictions apply. 



10

-135° -90° -45° 0° 45° 90° 135°

Direction of subject

80

85

90

95

A
cc

u
ra

cy
 (

%
)

(a) Gesture positioning.

-135° -90° -45° 0° 45° 90° 135°

Direction of subject

80

85

90

A
cc

u
ra

cy
 (

%
)

(b) Gesture recognition.

Fig. 16: Impacts of direction of subject.

facing the AP to the left and right at angles of 45°, 90°,
and 135°. The results for gesture positioning and recognition
accuracy are presented in Fig. 16(a) and Fig. 16(b), where
“-” denotes left rotation and “+” denotes right rotation. In
Fig. 16(a), slight variations in gesture positioning accuracy
are observed at angles of 45° and 90° compared to 0°. This
can be attributed to the reduced differences in the AoA of
gestures at these orientations, which makes it more challenging
to distinguish between different gesture positions compared to
the directly facing AP condition. Conversely, in Fig. 16(b), the
same 45° and 90° rotations have minimal impact on gesture
recognition accuracy, indicating that gesture recognition is less
sensitive to moderate angular changes. However, at an angle
of 135°, both gesture positioning and recognition accuracy
experience a noticeable decline. This degradation is due to the
subject facing away from the AP, where the body obstructs
the gestures, leading to significant attenuation of the LoS
sensing signal strength. These findings emphasize that while
VR-Fi maintains robust performance under moderate angular
deviations, its accuracy diminishes when substantial signal
blockage occurs due to the subject’s orientation.

C. Ablation study

1) Number of Channels: We initially conduct a detailed
evaluation of the impact of varying channel numbers on
VR-Fi, using Algorithm 1 of optimal channel selection al-
gorithm to select between 2 to 8 available channels. The
results, illustrated in Fig. 17, indicate that as the number
of channels increases, there is a notable improvement in the
gesture positioning accuracy of VR-Fi. However, the accuracy
improvement becomes less pronounced after four channels,
while the gesture recognition accuracy only exhibits a marginal
increase consistently. Considering the concern to minimize
channel occupation and thereby avoid interference with the
normal use of Wi-Fi communication in VR environments, we
opt for a configuration of four channels.

2) Channel Selection: Next, we comprehensively assess
the significant contribution of our optimal channel selection
algorithm to VR-Fi. For comparison, we selected three control
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Fig. 17: Impacts of the number of channels.
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Fig. 18: Impacts of channel selection.

groups: random channel selection from all available channels,
overlap channel selection from continuous channels in the
2.4 GHz band, and compact channel selection from continuous
channels in the 5 GHz band, as illustrated in Fig. 18. Fig. 18(a)
shows that while VR-Fi with the optimal channel selection
algorithm sustains high accuracy in gesture positioning, all
other three control groups experienced notable reductions
in accuracy. Specifically, the accuracy rates are 82.85% for
random channel selection, 59.73% for overlap channel se-
lection, and 65.29% for compact channel selection. These
declines are attributed to the insufficient frequency diversity
provided in these selections, which largely constrained the
actual expansion capabilities of the bandwidth. Fig. 18(b)
shows the impact of four channel selection methods on gesture
recognition. The results show that the optimal channel selec-
tion algorithm has a slight advantage because the expansion
of the frequency band is mainly to improve the positioning
resolution. The results clearly demonstrate that the optimal
channel selection algorithm can effectively enhance VR-Fi’s
sensing bandwidth, providing maximum frequency diversity
for gesture positioning and recognition.

3) MTPG-Net network: We further assess the critical con-
tribution of the MTPG-Net of VR-Fi to joint gesture posi-
tioning and gesture recognition. Specifically, we evaluate the
expert weighting module, a pivotal component of our multi-
task learning scheme. For comparative analysis, we append
multiple fully connected layers to the gesture feature vectors
extracted by the temporal modeling module and directly
produce an output that concatenates gesture positioning and
recognition label dimensions. Fig. 19 displays the confusion
matrices for gesture positioning and recognition with the
modified MTPG-Net of VR-Fi, recording average accuracies
of 83.81% and 84.80%, respectively. These figures are notably
lower than those achieved by the complete VR-Fi with MTPG-
Net. This decrease in performance results from the modified
model treating gesture positioning and recognition together as
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Fig. 19: Performance of VR-Fi without MTPG-Net.
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Fig. 20: Extended gesture recognition.

a whole. In this setup, the model attempts to address both two
tasks simultaneously but struggles to prioritize or distinguish
between the tasks of gesture positioning and recognition. In
contrast, the MTPG-Net with multi-task learning allocates
distinct expert network weights to different tasks during train-
ing, effectively capturing and utilizing latent interconnections
between tasks, while minimizing mutual task interference.
The ablation study of the model clearly demonstrates the
efficacy of MTPG-Net as an integrated solution for joint
gesture positioning and gesture recognition.

D. Extension of VR-Fi

Considering VR-Fi’s application scenarios, we further ex-
plore its ability to simultaneously position and recognize
gestures in VR environments. The results show that VR-
Fi achieved an impressive accuracy of 89.47%. Note that
this result is not a direct mathematical product of gesture
positioning and recognition accuracy, as there is an overlap in
error data samples between the two metrics. Meanwhile, the
performance of the two baselines of BVP-based and CSI-based
in gesture positioning is unsatisfactory, with accuracies of
only 45.33% and 55.58%, respectively. These outcomes further
highlight VR-Fi’s exceptional performance in addressing both
gesture positioning and recognition tasks within VR scenarios.

In addition, to further extend VR-Fi’s ability to differentiate
gestures of different directions, we include four intuitive
reverse gestures in our experiments, derived from the original
six gestures. Specifically, the gesture “PP”, originally “push-
then-pull”, is expanded to “pull-then-push” (PP′). Similarly,
“UD”, initially “Up-then-Down”, is extended to “Down-then-
Up” (UD′); “SW”, which is originally “right-then-left”, is
extended to “left-then-right” (SW′); and “DC”, originally
drawing a circle clockwise, is extended to drawing a circle
counterclockwise (DC′). The gesture recognition results of
VR-Fi are shown in Fig. 20, indicating an average accuracy
rate of 92.45% across these 10 gestures. We also observe that
VR-Fi exhibits excellent differentiation capability for gestures
of the same category but in opposite directions. This outcome
closely matches the results for the six gestures shown in
Fig. 8(b), highlighting VR-Fi’s ability to recognize various
gestures, including those with directional variations.

VI. RELATED WORK AND DISCUSSION

In this section, we introduce existing gesture recognition
proposals related to VR-Fi, categorizing them into two main
types: Wi-Fi-based methods and non-Wi-Fi-based methods.

Additionally, we incorporate a discussion of VR-Fi for its
comparison with other solutions and future works.

a) Wi-Fi-based Gesture Recognition: Early attempts
tried to use histograms of Wi-Fi signal amplitudes [51] and
Received Signal Strength Indicator (RSSI) [52] for gesture
recognition. In contrast, CSI, measured across multiple sub-
carriers, offers a greater diversity of information, rendering it
more suitable for activity recognition. For instance, WiG [53]
utilized features derived from CSI amplitude variations to
train a Support Vector Machine (SVM) classifier, enabling the
recognition of four common gestures: right, left, push, and
pull. Similarly, WiFinger [54] employed principal component
analysis (PCA) to extract CSI amplitude patterns and used
dynamic time warping (DTW) alongside k-nearest neighbor
(KNN) algorithms to compare waveform shapes, facilitating
the recognition of nine distinct gestures. However, most cur-
rent Wi-Fi gesture recognition research typically lacks the
capability to position gestures. Some studies crudely consider
the gesture’s position and the person’s location as factors
affecting recognition accuracy, often referring to these as
“domain” factors. These are typically only eliminated rather
than explicitly recognized, in contrast to VR-Fi which aims to
identify and utilize position factors.

WiAG [16] developed a transformation function to gen-
erate virtual samples that capture the positional relationship
of a person’s hand relative to the Wi-Fi transmitter and
receiver, thereby enabling cross-domain gesture recognition.
To circumvent the need for additional training in new do-
mains, Widar3.0 [17] extracts the Doppler Frequency Shift
(DFS) on at least three links to derive domain-independent
features and has developed a deep learning model suitable
for cross-domain gesture recognition. Unlike manually de-
signed domain-independent features, [55] employed adver-
sarial learning to construct a domain-independent feature
space. Recent research has expanded beyond using CSI as the
sole data source for gesture recognition; WiKI-Eve [18] and
MuKI-Fi [56] utilized beamforming feedback information—a
compressed digital version of CSI—to recognize finger typing
motions.

b) Non-Wi-Fi-based Gesture Recognition: For wearable
sensors, [57] achieved gesture recognition of sign language
using a data glove. Smartwatches [58] and wearable rings [59]
enabled text input recognition through hand movements. These
methods all required users to wear additional physical sensors.
Pioneering work by [60] established a foundational framework
for gesture recognition using dedicated cameras. Advances in
imaging technology enabled the use of depth and infrared
cameras [61]. Zhang et al. [62] further advanced the field
by employing 3D convolutional neural networks (3DCNN)
and bidirectional convolutional long short-term memory (Con-
vLSTM) networks to encode both global temporal and local
spatial information, enabling the extraction of sophisticated
spatiotemporal features for gesture recognition.

Radar-based gesture recognition systems offer fine-grained
sensing capabilities due to their large bandwidth but require
specialized and often expensive hardware. Hazra et al. [63]
utilized a compact 60-GHz millimeter-wave (mmWave) radar
sensor to extract and process a sequence of range-Doppler
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images, employing a long-recurrent fully convolutional neural
network (L-RFCN) for real-time dynamic gesture recognition.
Similarly, Ahmed et al. [64] used a Frequency-Modulated
Continuous Wave (FMCW) radar with two receiving channels
to design a novel three-stream convolutional neural network
(CNN). Their approach incorporated range-time, Doppler-
time, and angle-time spectrograms as inputs, fusing these
features in the later stages for gesture recognition. OCHID-
Fi [15], on the other hand, employed wideband RF sensors
integrated into smart devices to detect 3D human hand poses.
This system used a cross-modality and cross-domain training
process to extract skeletal structures, even in the presence of
obstacles.

c) Discussion: For non-Wi-Fi-based solutions, while
wearable sensors require additional contact devices, vision-
based solutions face issues such as being resource-intensive,
privacy concerns, and requirements for specific lighting con-
ditions, as discussed in Sec. I. Although radar-based solutions
provide ample bandwidth for fine-grained ranging, integrating
radar chips into VR headsets presents practical challenges.
These challenges include hardware compatibility, power con-
sumption limitations, and cost considerations associated with
the widespread adoption of radar chips in consumer-grade
VR devices. In contrast, Wi-Fi is already embedded in VR
headsets, making it a more accessible and cost-effective sens-
ing solution for VR-Fi. Considering that the AX210 NIC is
the only contemporary hardware capable of extracting CSI in
the 802.11ax format within 6 GHz channels, VR-Fi has not
yet tested its cross-hardware capabilities. We will explore this
further as Wi-Fi hardware evolves in the future.

VII. CONCLUSION

We have developed VR-Fi as a pioneering VR-embedded
Wi-Fi sensing system, designed to implement joint gesture
positioning and recognition within a VR environment. VR-Fi
initially incorporates the FHBE technique to facilitate band-
width expansion, thereby capturing greater frequency diversity
of CSI. This technique is particularly beneficial for commercial
Wi-Fi NICs equipped with a limited number of antennas
to enhance spatial resolution. Given the lack of suitable
signal processing tools for handling FHBE-enhanced channel
samples with unknown interference, we have innovated in the
MTPG-Net model. Simultaneously, this model employs multi-
task learning to achieve joint gesture positioning and recog-
nition by utilizing an adaptive gate scheme to dynamically
assign weights to different task experts. Through extensive
experiments with our VR-Fi prototype, we have demonstrated
its capability to accurately position and recognize user gestures
in various indoor VR scenarios.
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