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a b s t r a c t

This paper aims to develop an accurate and efficient end-to-end fault detection model trained by small-
scale data for the rotating machinery. The echo state network (ESN) is promising thanks to the training
process by linear regression, but it struggles in mining spatial information. Thus, a deep ESN based on
fixed convolution kernels (FCK-DESN) is proposed. The Prewitt, the Sobel, and the Gaussian lowpass
filters are designed as the fixed convolution kernels for spatial feature extraction without training. The
one hidden layer autoencoder is built to compress the dimensionality and improve the applicability.
Based on the pre-process modules, the ESN could realize pattern recognition under complex conditions.
The fault detection approach is then constructed based on the time–frequency information provided by
the smoothed pseudo-Wigner–Ville distribution. Case studies of a rotor-bearing system and a diesel
engine show that the proposed FCK-DESN approach has better recognition rates than popular deep
learning methods with high efficiency and lower data size requirements, which has more practical
significance.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Rotating machinery, an essential part of modern industry,
s increasingly compact and integrated for a higher power-to-
eight ratio. Along with terrible working conditions, fault symp-
oms become hard to detect, and fault patterns are challenging
o recognize [1]. Developments of sensors, information transmis-
ion, and data analysis technology promote the application of
ata-driven fault detection and control [2], in which the pattern
ecognition model plays a vital role [3]. Vibration signal is widely
sed in the fault detection of rotating machinery because of easy
cquisition and rich information, whereas the fault features are
sually covered deeply in the one-dimensional time-dependent
ignal, resulting in the model’s struggling balance between ac-
uracy and efficiency. Therefore, it is necessary to research a
uperior method for rotating machinery fault detection.
Traditional fault detection is a step-by-step data processing

pproach including signal decomposition, feature extraction, fea-
ure selection, and mode identification. Vibration signals are com-
only decomposed into components firstly. Then, features can
e extracted and identified [4,5]. Machine learning algorithms
uch as support vector machine (SVM) [6] and fuzzy C-means
FCM) clustering [5] are widely used as classifiers but struggle in

∗ Corresponding author.
E-mail address: linjiewei@tju.edu.cn (J.W. Lin).
ttps://doi.org/10.1016/j.asoc.2022.109335
568-4946/© 2022 Elsevier B.V. All rights reserved.
heterogeneous or nonconvex datasets. Therefore, Farhat et al. [7]
employed the multi-kernel SVM (MSVM) model to analyze rele-
vant features for bearing defects detection, and Oluwasegun et al.
[8] combined the SVM and the K-means to diagnose anomalies in
nuclear power plant components. Nonetheless, all of the above
classifiers require features that fully describe the measured data.
The applicability is also a challenge for signal decomposition and
feature extraction and selection.

End-to-end fault diagnosis is proposed to simplify data pre-
processed to improve applicability and efficiency. The data
decomposition, feature extraction, and feature selection are can-
celed out or integrated into the classifier in the end-to-end
approach. The raw data will be inputted into the classifier for
pattern recognition directly, and the whole fault diagnosis con-
tains only one step. Although the complexity is much reduced,
the requirement for the classifier is increased. The information
hidden in the one-dimensional signal calls for deep learning
methods [9]. To this end, deep belief networks (DBNs) [10],
convolutional neural networks (CNNs) [11], and recurrent neu-
ral networks (RNNs) [12] are employed in different applica-
tions. Topology adjustment and pretreatment are frequently used
application-oriented optimization methods for artificial neural
network (ANNs). Yan et al. [13] built a multiscale cascading DBN
(MCDBN) to learn high-level features from multiscale characteris-
tics of vibration signals parallel for rotating machinery faults de-

tection. Deng et al. [14] proposed an improved quantum-inspired
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ifferential evolution (MSIQDE) to optimize hyper-parameters of
he DBN for diagnosing bearing faults. On the other hand, Zhong
t al. introduced a diversified DBN model based on pre-training
nd fine-tuning [15]. Compared with the DBN, CNN is more
uitable for high-dimensional data [16]. The structure of CNN is
ritical to the implementation. The first optimization direction
or CNN is adjusting the depth and size of the network, such
s the CNN model based on LeNet-5 [17]. The second direction
s to construct a parallel structure. Jiang et al. [18] designed a
ultiscale CNN (MSCNN) based on the multiscale coarse-grained

ayer to extract multiscale features and recognize gearbox faults
rom the vibration signal directly. The third one is to design par-
icular convolution kernels. For example, Zhang et al. [19] used a
NN wide first-layer kernel (WDCNN) for bearing faults detection.
owever, the CNN with a complex structure does not necessarily
ave ideal performance because the feature maps may contain
ots of irrelevant information. The attention mechanism (AM) can
electively ignore partial information and strengthen the other
nformation to weight the features further. The most frequently
sed AMs are the channel attention mechanism (CAM) [20], the
patial attention mechanism (SAM) [21], and the convolutional
lock attention module (CABM) [22]. The first one weights fea-
ures in the channel dimension, the second one weights features
n the spatial dimension, and the third one combines the CAM
nd the SAM.
The RNN can deal with the time sequence better, but the

tandard RNN is difficult to train because of the gradient van-
shing and exploding. As a variant of RNN, the long short-term
emory (LSTM) network overcomes the above problems using

he forget gate, the input gate, and the output gate by filtering
nformation [23]. Based on the same theory, the gated recurrent
nit (GRU) neural network is built using the reset gate and
he update gate [24]. The LSTM and the GRU are well-matched
n many applications. Optimization algorithms, such as artificial
ish swarm (AFS) [25], and multilayer GRU (MGRU) [26] apply
o these RNNs. Besides, pre-processing of the vibration signals
sing wavelet packet transform (WPT) [27] or ensemble empirical
ode decomposition (EEMD) [28] also contributes to fault de-

ecting rate. The data pre-processing is also combined with the
NN to improve local feature extraction. Zhou et al. [29] used
NN to mine the local spatial information of the partial discharge
pectrum and LSTM to mine its time-series feature information,
hen proposed a CNN-LSTM model for partial discharge pattern
ecognition. Wang et al. [30] combined the advantages of the
ne-dimensional CNN in local features and the GRU in global and
ynamic information to propose a CNN-GRU model for hybrid
aults diagnosis. It is difficult to build a very deep structure in the
STM and the GRU. Alternatively, independently RNN (IndRNN)
rovides another solution with independent neurons in the same
ayer and shows satisfying robustness [31]. However, training of
eep learning model is highly dependent on the GPU performance
ecause of the slow convergence speed caused by the back-
ropagation (BP) method, especially for the back-propagation
hrough time (BPTT) in the RNNs. Only partial information is
vailable in large-scale ANNs, making it even more resource-
onsuming for BP [32,33]. Besides, the local optimum brought by
radient descent is an adverse effect on the recognition rate. The
ver-fitting for small training datasets is hard to solve thoroughly,
ven using the sparse model built by dropout [10]. In practice, the
ault detection of machinery requires simple hardware with low
ost. It is one of the main reasons that widely accepted models
uch as the VGGNet [34] and the ResNet [35] have hardly been
pplied in engineering. In addition, requirements of the DBN and
he RNNs for one-dimensional signals may destroy the spatial
nformation of high-dimensional data. The characteristics of these

lgorithms are summarized in Table 1.

2

An ideal end-to-end faults detection method shall be con-
structed with a simple structure and trained by a small dataset
to work efficiently and practically. As a novel type of RNN, the
echo state network (ESN) [36] is attracting attention because it
takes a randomly generated reservoir as the basic processing unit
instead of hidden layer neurons, and its training process is a
linear regression. The ESN shows great potential in many fields
thanks to its simple structure and low data requirement, such as
emotion recognition [37], vehicle faults diagnosis [38], and so on.
However, the ESN has defects in mining deep information and
dealing with spatial information. Many efforts have been made:
Long et al. [39] designed a deep model stacked by multiple ESNs,
and Wang et al. [40] combined the ESN with the DBN to increase
the information mining depth. However, these models still strug-
gle with complex structure and spatial information destroying
during unfolding high-dimensional data. Ma et al. [41] collected
all past echo states as the multi-time scale echo state representa-
tions and extracted their multiscale temporal dependencies by a
convolutional layer for the ESN to propose a convolutional multi-
time scale ESN model, whereas large training data is needed for
high precision. Therefore, the development of an ESN model with
a simple structure and small data requirement is essential for
end-to-end faults detection.

In this paper, a deep ESN is proposed based on fixed convolu-
tion kernels. The main contributions are as follows:

(1) Fixed convolution kernels are designed based on the Pre-
witt filter, the Sobel filter, and the Gaussian lowpass filter for the
spatial feature extraction without training. A one hidden layer
autoencoder (AE) is built to reduce the dimensionality and extract
features further to release the burden of the ESN and improve the
generalization.

(2) An accurate and efficient model named FCK-DESN is pro-
posed for end-to-end pattern recognition with the help of the
fixed convolution kernels and the AE. Analyses prove that the
model is advantageous to small datasets and robust to hyper-
parameters, initial weights, and topology.

(3) The smoothed pseudo-Wigner–Ville distribution (SPWVD)
is employed to provide rich time–frequency information for the
FCK-DESN when dealing with the one-dimensional time-
dependent vibration signal.

The content of this paper is organized as follows: Section 1
introduces the research background and significance. Section 2
gives the fundamental theories of algorithms. The deep ESN is
proposed in Section 3. In Section 4, the bearing and diesel engine
faults are recognized by the proposed deep ESN. Section 5 is
the analysis and discussion. Conclusion and outlook are given in
Section 6.

2. Background theories

2.1. Echo state networks

The ESN, a type of RNN, is a reservoir computing model, as
shown in Fig. 1. The reservoir is an internal network that input
signals can activate diverse states. These states describe features
of the input signals through linear combination so that the output
could be obtained by linear regression [36]. During training, only
the output weights will be adjusted. It also avoids the local opti-
mum, the vanishing gradient, and the exploding gradient brought
by the gradient descent algorithm [37,38].

Supposing u = {u1, u2, . . . , un} is the input signal vector
nd y = {y1, y2, . . . , ym} the output, the reservoir state x =

x1, x2, . . . , xN} in leaky-integrator ESN is updated as:

(t+1) = (1 − αγ ) x(t)+γ f (Winu(t+1)+Wx(t)+Wback y(t)) (1)

here α is the leaking rate, γ the gain, t the time-step, x(t)
he reservoir state in the tth update cycle, f • the activation
( )
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Table 1
Characteristics of algorithms.
Strategy Method Advantage Disadvantage

Step-by-step FCM [5]; SVM [6]; MSVM [7]; SVM-K-means [8]. Low requirement for the
classifier.

High dependence on features; Low generalization;
Complex process.

End-to-end

MSDBN [13]; MSIQDE-DBN [14]; Diversified DBN
[15].

High efficiency and
generalization; Low
dependence on expert
knowledge.

High requirement for training data and hardware;
Complex structure; The DBN, the LSTM, the SAE,
and the MLP may destroy the spatial information.

LeNet-5 [17]; MSCNN [18]; WDCNN [19]; CNN-CAM
[20]; CNN-SAM [21]; CNN-CBAM [22]; VGGNet [34];
ResNet [35].

AFS-GRU [25]; MGRU [26]; WPT-LSTM [27];
EEMD-LSTM [28]; CNN-LSTM [29]; CNN-GRU [30];
IndRNN [31].
Fig. 1. Structure of the ESN.

function, Win the randomly generated input weight matrix of
N × n, and W the randomly generated reservoir internal weight
matrix of N × N. N is the reservoir size, and n is the input size.
Wback is the feedback weight matrix and usually neglected, and
γ = 1 [37], so Eq. (1) can be transformed as:

x(t + 1) = (1 − α) x(t) + f (Winu(t + 1) + Wx(t)) (2)

The output can be computed as follows:

y(t) = g([x(t), u(t)]Wout) (3)

where g (•) represents the activation function. Wout is the output
weight matrix of (N + n) × m, and the ESN is a multiple output
classifier with m types of labels. The activation functions of the
ESN are hyperbolic tangent (tanh) functions in this paper.

During the training process, only Wout is adjusted, whose
objective function L (•) is:

L(
⌢
W out) =

g−1 (y) − [x, u]Wout
2
2 (4)

where ∥·∥2 represents the L2-norm. The estimate of the output
weight matrix

⌢
W out can be solved as:

⌢
W out = [x, u]† g−1 (y) = ([x, u]T [x, u])−1 [x, u]T g−1 (y) (5)

where the superscripts † and T represent the pseudo inverse and
the transpose, respectively.

2.2. Convolution and pooling

This section describes the convolution and pooling operation
processes and the feature map size to provide the theoretical
basis for the following fixed convolution kernels design. Convo-
lution can be regarded as feature extraction and dimensionality
reduction, and pooling can be considered as down-sampling [16].
The convolution uses convolution kernels for traversing the input
matrix to obtain the output. Supposing the input D =

[
x

]
is
in ij h×h

3

a h × h matrix, the convolution kernel K =
[
kij

]
d×d is a d × d

matrix, and the output C =
[
cij

]
mc×mc

is a mc ×mc matrix. Then,

mc = (h + 2pc − d) /sc + 1 (6)

where pc is the size of padding and sc the stride.
The element cij in the output matrix C is:

cij = f

⎛⎝ d∑
q=1

d∑
l=1

x(sc×i+1)+q−1,(sc×j+1)+l−1 • kql + b

⎞⎠ (7)

where b is the bias and f (•) the activation function.
The pooling layer is used to down-sample the convolutional

data. The basic operation of pooling is characterizing a certain
region by a specific value, normally the max-pooling or the mean-
pooling. The pooling layer also ensures the rotation and transla-
tion invariances of the matrices to a certain extent.

3. Deep ESN based on fixed convolution kernels

To improve the capability of the ESN in mining deep in-
formation and dealing with spatial features, fixed convolution
kernels are introduced to extract features, and the AE is used for
dimensionality reduction. On this basis, a deep ESN based on fixed
convolution kernels (FCK-DESN) is proposed.

3.1. Fixed convolution kernel

The ESN has high efficiency and requires small training data,
whereas it is not good at dealing with spatial information. The
CNN could extract local features gradually by convolutional layers
and is suitable for high-dimensional data, but a large amount of
data should train it. Especially for a deep network, the adjusting
of weights by the BP algorithm is seriously slow. Thus, fixed con-
volution kernels are used for feature extraction. The procedure
is replacing the trained convolution kernel K in Eq. (7) with the
fixed convolution kernel.

Considering that the convolution kernel is essentially a filter,
this paper designs fixed convolution kernels based on several
classical filters. The priority of the fixed convolution kernel is
to detect feature regions whose gradients are large in general.
The edge detector is a common choice because it could eliminate
irrelevant information and locate the energy concentration. The
Prewitt filter and the Sobel filter are selected for simple structure
and a certain image smoothing capability. Moreover, they are
especially appropriate to be designed as large-size convolution
kernels to extract features from single-channel images. The Pre-
witt filter can be regarded as an average filter and the Sobel filter
as a weighted average filter. Their common forms are horizontal
and vertical operators, as shown in Fig. 2(a)–(d). In particular, the
Roberts operator, the Kirsch operator, and the Canny operator
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Fig. 2. Convolution kernels. (a) Horizontal Prewitt filter. (b) Vertical Prewitt filter. (c) Horizontal Sobel filter. (d) Vertical Sobel filter. (e) Gaussian lowpass filter.
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are also frequently used edge detectors. However, the first two
operators have formalized formworks. The Roberts operator is
usually a matrix of 2 × 2, and the Kirsch operator is composed
f eight matrices of 3 × 3. The Canny operator contains complex
alculations and is not convenient to adjust based on the input
ignal. Compared with them, the Prewitt and the Sobel operators
re universal and adaptable.
The Prewitt and the Sobel operators are simple filters and

asily result in inaccurate edge location and rough edges, which
equire a filter to smooth and integrate the features. The Gaussian
owpass filter, see in Fig. 2(e), is used to reduce the Gaussian
oise, smooth images, and fuse slight features. Supposing the
ize of the Gaussian lowpass filter is d × d, then the element
kij (i, j ∈ [1, d]) is:

kij = exp
{
−

(
D2
i + D2

j

)
/2σ 2} (8)

where σ represents the standard deviation. Di and Dj represent
oordinate points of the filter in two directions, respectively. One
an obtain Di = (2i − d − 1) /2 and Dj = (2j − d − 1) /2, so:

ij = exp
{
−

(
(2i − d − 1)2 + (2j − d − 1)2

)
/8σ 2} (9)

The σ is usually selected by the empirical formula σ = d/3.
onsidering that the big the σ , the smoother the result of the
aussian lowpass filter, the σ is rounded up as ⌈d/3⌉ in this
aper. When designing a convolutional layer, the size and number
f kernels should be adjusted according to the actual condition.
he Gaussian lowpass filter is set behind the Prewitt filter and the
obel filter to avoid adverse effects on edge detection. The bias b
n Eq. (7) is set linearly, such as {· · · , −2, −1, 0, 1, 2, . . .}.

.2. Autoencoder

The disadvantage of the fixed convolution kernel is its low
eneralization capability. Besides, when extracting multi-scale
eatures using several convolution kernels, the dimensionality of
he processed data is hard to reduce. So, the AE is employed
o compress the dimensionality and extract features further to
elease the burden of the ESN.

Since the deep AE with multilayer structure needs a large
ize of training data, a single hidden layer structure is chosen.
upposing the data processed by the convolutional layer is C,

Encoder: u = f
(
CW T

en

)
(10)

Decoder:
⌢
C = g

(
uW T

de

)
(11)

here
⌢
C is the estimate of C, f (•) and g (•) are the activation

unctions.
The weight matrices, Wen and Wde, can be trained by the gra-

ient descent algorithm. When the dimensionality of u is lower
han that of C, an undercomplete AE can be obtained to improve
he generalization capability and reduce the dimensionality.
4

.3. FCK-DESN

Based on the fixed convolution kernels and the AE, features are
xtracted with a much smaller group of training data. Then the
utput weight matrix of the ESN, Wout, is trained. To activate the
nternal state of the reservoir, the processed signals are copied
wice to obtain three of the same time-steps. The internal state
omputed by Eq. (2) could be unfolded as:

x (1) = f (Winu)
x (2) = (1 − α) x (1) + f (Winu + Wx (1))
x (3) = (1 − α) x (2) + f (Winu + Wx (2))

(12)

Special to note is that if there is only one time-step, Eq. (12)
will be x (1) = f (Winu). The calculation ignores the reservoir, and
the model is not an ESN. Furthermore, the reservoir size is usually
small when the ESN is used for pattern recognition, leading to the
information in x(t) being compressed highly. Therefore, the input
signal is also employed to ensure the information for the ESN. In
this research, all the three internal states are collected by certain
weights [36]:⎧⎨⎩
InSt (1) = 0.33 [x (1) , u] + 0.67 [x (2) , u]
InSt (2) = 0.67 [x (2) , u] + 0.33 [x (3) , u]
InSt (3) = [x (3) , u]

(13)

The output in Eq. (3) could be computed as:

y = g ([InSt (1) , InSt (2) , InSt (3)]Wout) (14)

Supposing InSt = [InSt (1) , InSt (2) , InSt (3)], the output
weights could be computed as:
⌢
W out = InSt† g−1 (y) = (InStTInSt)−1InStT g−1 (y) (15)

At this point, the FCK-DESN model can be constructed, as
shown in Fig. 3. The model can be developed by three steps: (1)
design the structure of the convolutional layer based on input
data, (2) train the AE and obtain the low-dimensional data using
the convolutional data, and (3) train the ESN. The fixed convolu-
tion layers and pooling are used to extract local features gradually
without training. The encoder is mainly for generalization, and it
can also reduce the dimensionality and extract features further.
The ESN is finally employed to recognize the analyzed data for
classification. The proposed FCK-DESN is given as Model.

Among the main hyper-parameters, the structure of the fixed
convolutional layer containing the number of layers and channels,
kernel size, and kernel type should be designed based on input
data. Considering the deep layer with small kernel sizes is hard to
control, the shallow layer with big kernel sizes is recommended
in this paper. The n is also the dimensionality of encoder output
in the AE. The leaking rate and spectral radius determine the
characteristic of the ESN, and the reservoir size determines the
model capacity. The research of Jaeger et al. [36] shows the α

could be 0.2 in the classification task, and the other two, along
with the n, will be analyzed in the following content.
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Fig. 3. Model of the FCK-DES.
Model: FCK-DESN
Input: Training data: Datatrain and Labeltrain, and testing data
Datatest .
Output: Predicted labels of test data: Labeltest
Hyper-parameters: Structure of fixed convolutional layer,
learning rate and batch size of the AE, dimensionality of the
ESN input n, leaking rate α, spectral radius ρ, and reservoir
size N.
Training:
1. Based on Eq. (6), design the structure of fixed convolutional
layer by the Prewitt, the Sobel, and the Gaussian lowpass
filters.
2. Based on Eq. (7), perform convolution and pooling on
Datatrain to obtain Ctrain.
3. Based on Ctrain and n, train the AE to obtain Wen. Compute
utrain by Eq. (10).
4. Based on Eqs. (12)–(15), train Wout by utrain and Labeltrain.
Testing:
1. Use Datatest to predict the labels of test data, Labeltest , by
Eqs. (7), (10), and (12)–(14).

The proposed model is trained block-by-block, in which the fixed
convolution kernels do not need training, the AE has only one
epoch training because it is just for dimensionality reduction
and generalization capability, and the training of Wout is a linear
egression. Supposing the dimensionality of input data for the
E is nc and the number of neurons in the hidden layer is n,
he multiply-accumulate operations (MACCs) of the AE could
e computed as 2nc×n according to the encoder and decoder.
upposing the reservoir size of the ESN is N, the dimensionality
f InSt could be computed as 3(N + n) based on Eqs. (12)–(14).
he MACCs of the training process in the ESN are 3(N + n)×ny,
here ny is the dimensionality of output. Compared to traditional
odels, most parts of the FCK-DESN are fixed, and the output

ayer is trained by linear regression. Additionally, the model takes
spare reservoir as the basic processing unit. These are beneficial
or obtaining an accurate and efficient model.

. Experiments and results

Experiments of a rotor-bearing system and an engine test rig
re employed to validate the capability of the proposed FCK-DESN
n fault detection.

.1. Data preparation

.1.1. Bearing case
The bearing fault dataset from Case Western Reserve Univer-

ity1 is used, including 7 conditions: the normal condition, the

1 https://csegroups.case.edu/bearingdatacenter/home.
5

inner race defects of 0.007 and 0.014 in., the ball defects of 0.007
and 0.014 in., and the outer race defects of 0.007 and 0.014 in.,
respectively (hereinafter referred to as Conditions 0–6). The data
is collected from the vibration acceleration sensor placed on the
drive end under 1797 r/min with a sampling rate of 12000 points
per second. Taking the data of a single revolution as one sample,
300 samples per working condition and 2100 sample sets in total
are obtained.

The frequency-domain information of the original vibration
signal is hidden because it is a one-dimensional time series. The
Wigner–Ville distribution (WVD) is a common time–frequency
representation (TFR) algorithm, whereas it is bedeviled with
quadratic cross-terms [42]. Several more bilinear time–frequency
processing methods in the Cohen’s class [43], including the
Born–Jordan distribution (BJD), the Butterworth distribution
(BD), the Choi–Williams distribution (CWD), the Margenau–Hill
distribution (MHD), the Rihaczek distribution (RD), the pseudo-
Wigner–Ville distribution (PWVD), and the smoothed pseudo-
Wigner–Ville distribution (SPWVD) are used to analyze the
vibration signal. These algorithms could be seen as the WVD with
different kernel functions (details are shown in Appendix B) [44].
Meanwhile, smoothing windows in time and frequency domains
have great influences on results. Hamming window can effec-
tively reduce energy leaking because of the small side lobe, which
is applicable for signals with complex spectrum [45]. Fig. 4 shows
the time–frequency results of a signal in Condition 3 using the
above algorithms with Hamming window. Besides, as represen-
tative TFR algorithms, short-time Fourier transform (STFT) and
continuous wavelet transform (CWT) [44] are also studied (the
wavelet coefficients are enlarged 20 times for unified scale).

The Renyi entropy is employed to compare these algorithms
quantitatively (see the bottom right of Fig. 4). The smaller the
Renyi entropy, the better the energy concentration degree [46].
The SPWVD is selected due to the lowest Renyi entropy of 5.89.
Special to note is that the Renyi entropies of the BJD, the BD,
and the CWD are similar to the SPWVD’s, whereas this is not the
research focus of this paper, so the SPWVD is selected just by a
simple comparison.

The sample processed by the SPWVD is a 240 × 400 matrix,
and 7 sets of signals in Conditions 0–6 (abbreviated as C0-6) are
shown in Fig. 5, respectively. It contains rich information and a
few cross-terms that will be taken as the input of the FCK-DESN.

4.1.2. Engine case
A bench test is performed on a turbocharged in-line diesel

engine, as shown in Fig. 6(a). The engine is connected rigidly to a
horizontal platform, which is supported by four air springs. The
natural frequency of the air spring is below 2 Hz. The engine is
driven by an electrical dynamometer. Acceleration sensors are
placed on the Y-direction (the horizontal direction perpendicular
to the crankshaft) of the engine block and the cylinder head cover.

https://csegroups.case.edu/bearingdatacenter/home
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Fig. 4. Comparison of time–frequency analysis methods.
Fig. 5. Results of signal analyzed by the SPWVD.
s a reference, vibration in the Z-direction (the vertical direction)
f the cylinder head cover is also measured, as shown in Fig. 6(b).
enerally, the fault feature frequency of the tested engine is
ot higher than 10 kHz [47]. Based on the Nyquist sampling
heory and the filtering characteristics of the testing equipment in
6

cut-off frequency, the sampling rate is set as 25600 points per
second, i.e., the analysis frequency is 12.8 kHz. The sensor is
the piezoelectric accelerometer ICP 621B40 (PCB, U.S.), whose
frequency range is 1.6 Hz to 30 kHz. The signal is transmitted
by coaxial cable PCB 002P30, whose shielding layer can avoid



X. Li, F. Bi, L. Zhang et al. Applied Soft Computing 127 (2022) 109335

e
(
i
t

g
d
a
r
p
e
a
t
i
r
‘
n

n
w
r
2
t
c

4

v
s
F
P
a
i
c

Table 2
Dataset of engine faults.
Fault types Description Number of samples

1300 r/min 1600 r/min Total

Normal working condition Original condition 90 150 240
Abnormal fuel delivery −25% 90 150 240
Delayed injection timing +2 ◦CA 90 150 240
Advanced injection timing −2 ◦CA 90 150 240
Big valve clearance +0.05 mm 90 150 240
Small valve clearance −0.05 mm 90 150 240
High rail pressure +200 bar 90 150 240
Low rail pressure −200 bar 90 150 240
Total \ \ \ 1920
Fig. 6. Engine testing bench. (a) Testing engine. (b) Acceleration sensors.
lectromagnetic interference. The data collector is the type SCM05
Siemens, Germany), and its built-in filter can avoid aliasing
nterference. Thus, the equipment could ensure the reliability of
esting.

According to [48], the four most frequent faults of diesel en-
ines are reproduced in the experiments, including abnormal fuel
elivery, abnormal injection timing, abnormal valve clearance,
nd abnormal rail pressure. The speeds during 1300 r/min-1600
/min are economic operation range; thus, the maximum torque
oint at 1600 r/min and frequently used point at 1300 r/min are
mployed in this study. Certainly, comprehensive training data
lso could obtain the model for more working conditions. Besides,
he physical performance of the working status in the experiment
s the same as the practical application, which means the data is
epresentative. The dataset is listed in Table 2, where ‘‘+’’ and
‘−’’ represent increasing and decreasing parameters from the
ormal condition, respectively, and CA the crankshaft angle.
The Y-direction data collected from the cylinder head cover

ear the third cylinder is analyzed. The vibration signal in one
orking cycle is taken as a sample, which means the crankshaft
otates two revolutions. After processed by the SPWVD, a
40 × 600 matrix is obtained (the spectra are not given because
hey are similar to Fig. 5). 240 sample sets in each working
ondition are selected, and 1920 sets are obtained in total.

.2. Models and results

Based on the time–frequency domain data, two similar con-
olution structures containing three convolutional layers are de-
igned for the bearing and engine faults detections, as shown in
ig. 7. For the bearing case, the first layer contains six 21 × 21
rewitt filters composed of three horizontal and vertical oper-
tors. The second layer consists of six 11 × 11 Sobel filters,
ncluding three horizontal and vertical operators. The third layer
ontains three 11 × 11 Gaussian lowpass filters.
7

Fig. 7. Topologies of faults detection models.

Similarly, for the engine case, the first and second layers
contain six 41 × 41 Prewitt filters and six 21 × 21 Sobel filters
composed of three horizontal and vertical operators, respectively.
The third layer contains three 11 × 11 Gaussian lowpass filters.

For each model, a 2 × 2 mean-pooling layer is added behind
every convolutional layer. It is noted that the dimensionality of
the ESN input (the encoder output of the AE) n = 1500, the
reservoir size N = 5, and the spectral radius ρ = 0.6 are
important hyper-parameters, which will be discussed later. An
overall framework of the proposed method is shown in Fig. 8.

In the bearing case, 25 samples of every condition separately,
175 samples in total, are taken as the validation set, and 50
samples of every condition separately, 350 samples in total, are
taken as the testing set. In the engine case, 20 samples of ev-
ery condition separately, 160 samples in total, are taken as the
validation set, and 40 samples of every condition separately, 320
samples in total, are taken as the testing set. Details are listed
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Fig. 8. Overall framework of the proposed method.

Table 3
Divisions of the validation sets and testing sets.
Case Bearing Engine

Dataset Validation
set

Testing
set

Validation
set

Testing
set

Samples in every label 25 50 20 40
Number of labels 7 8
Total 175 350 160 320

in Table 3. A parameter is defined as p = Training data size/All
amples to analyze the influence of the training data size on the
etection result under the same validation set and testing set.
he dataset is divided in chronological order. The samples at the
eginning are the training set, the samples in the middle are the
alidation set, and the samples at the end are the testing set.
or comparison, the original ESN, the DBN, the CNN, the CNN-
AM, the CNN-SAM, the CNN-CBAM, the standard RNN, the LSTM,
he GRU, and the IndRNN are also used. The best testing results
ut of ten runs of these algorithms are listed in Tables 4 and 5,
onsidering that an ANN could give different results even with
he same hyper-parameters due to its high sensitivity to initial
eights. Besides, Recognition rate = (Ycorrect/Yall) × 100%, where
correct is the number of correctly detected samples, and Yall is the
umber of all the samples.
Various original ESN and DBN models are tried: using them

ith different structures to test original time-domain signal and
ime–frequency domain data. Unfortunately, all of them, includ-
ng sparse models, obtain unsatisfying results, and the best results
ecognized by time–frequency domain signal are shown. The
ecognition rates of the original ESN are all lower than 50%. The
ecognition rates of the DBN are 14.29% (1/7) for the bearing case
nd 12.50% (1/8) for the engine case, respectively. The reason is
hat these two models require one-dimensional input unfolded
rom the time–frequency domain signal, which destroys the spa-
ial structure of the time–frequency matrix seriously. Besides,
imited training data leads to over-fitting in the DBN. Several CNN
odels, including different convolutional layers and kernel sizes,
re also tested, whereas they suffer the same problem and obtain
he same recognition rates with the DBN (14.29% and 12.50%,
espectively). Considering that the CNN could retain the spa-
ial structure of the time–frequency matrix, several optimization
ethods such as dropout and batch normalization (BN) [49] are
mployed to alleviate the over-fitting. Based on the BN, two CNN
odels having the same structures with the convolutional layers
f the FCK-DESN for the bearing and the engine cases separately
as shown in Fig. 7) show the best performances. Furthermore,
hree optimized models: the CNN-CAM, the CNN-SAM, and the
NN-CBAM, are also analyzed, whose results are listed in Tables 4
nd 5. The CNNs could obtain recognition rates over 90% with
arge training data, whereas they decline sharply with decreasing
, which indicates the small training data is gradually unable to
eet their requirements.
8

Considering the advantage in processing time series, the stan-
dard RNN, the LSTM, and the GRU models with three-layer struc-
tures are built to analyze the original vibration signal. The IndRNN
with six layers is also tested. The RNN is unable to recognize
the bearing and engine faults. The IndRNN has better recognition
rates, whereas they are far from satisfactory. The recognition
rates of the LSTM and the GRU in bearing case are about 90% but
still lower than the FCK-DESN. The recognition rates of engine
case are unsatisfying, especially for p = 1/2. The principal
reason is that the engine vibration signal contains lots of impact
components and noise, which would degrade the performances
of the LSTM and the GRU seriously.

Besides, the training processes of the CNN, the standard RNN,
the LSTM, the GRU, and the IndRNN heavily depend on the GPU,
whereas they would take several days on the CPU. The FCK-DESN
shows the best performance: it can maintain the accuracy over
of 90% for all cases and holds steady in a certain with the p
changing. Furthermore, the proposed method could identify dif-
ferent defects accurately with recognition rates over 80%. Based
on the comprehensive analysis, the FCK-DESN has the highest
classification precision and is advantageous in the requirement
for training data at the same time.

5. Analyses and discussion

Some issues of the FCK-DESN are worthy of further discussion.
The engine faults detection case (p = 3/4) is analyzed.

5.1. Hyper-parameters analyses

The dimensionality of the ESN input n, the reservoir size N,
and the spectral radius ρ are important hyper-parameters in the
FCK-DESN. The hyper-parameters are tested manually based on
the validation set in this section. Firstly, the reservoir size and the
spectral radius are set as N = 4 and ρ = 0.4 separately to analyze
the dimensionality of the ESN input n, and recognition rates are
listed in Table 6. The FCK-DESN can obtain the highest recognition
rate of 98.75% in n = 1500 and n = 1800. The parameter is set as
n = 1500 because a low dimensionality is conducive to efficiency.

Next, the reservoir size N and the spectral radius ρ are an-
alyzed under n = 1500. The research of Jaeger et al. [36] shows
that ρ ∈ (0, 1) and N < 10 are appropriate for pattern recognition
tasks in general. Recognition rates of different hyper-parameter
combinations within these ranges are listed in Table 7. The results
fluctuate around 98.00%, and several combinations can obtain the
highest recognition rate of 99.38%. In this study, N = 5 and
ρ = 0.6 are chosen because the small reservoir is more efficient.
Results in Tables 6 and 7 indicate that the hyper-parameters have
a certain influence on the accuracy, but not significantly. It means
that the FCK-DESN is quite robust to these hyper-parameters
when they are restrained in a reasonable range.

5.2. Significance test

As mentioned above, ANNs are sensitive to initial weights.
Therefore, ten testing results of every model trained in random
initial weights are analyzed. The p-values of t-tests between the
FCK-DESN and the other ten models are listed in Table 8. In
general, if the p-value is less than 0.05, the two results have sig-
nificant differences. It shows the FCK-DESN is quite reliable, and
its high accuracy does not benefit from random initial weights.

5.3. Cross-validation

As described in Section 4.2, the dataset is divided in chrono-
logical order. The first 180 samples in every condition separately
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Table 4
Bearing faults recognition rates of different models.
Model p Normal working condition Inner race defect Ball defect Outer race defect Total

0.007 in. 0.014 in. 0.007 in. 0.014 in. 0.007 in. 0.014 in.

Original ESN
3/4 90.00% 30.00% 50.00% 26.00% 46.00% 22.00% 26.00% 41.43%
2/3 90.00% 26.00% 48.00% 32.00% 32.00% 14.00% 26.00% 38.29%
1/2 88.00% 10.00% 68.00% 20.00% 34.00% 12.00% 32.00% 37.71%

DBN
3/4 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 14.29%
2/3 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 14.29%
1/2 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 14.29%

CNN
3/4 100.00% 82.00% 90.00% 92.00% 94.00% 100.00% 92.00% 92.86%
2/3 100.00% 80.00% 88.00% 98.00% 56.00% 100.00% 100.00% 88.86%
1/2 100.00% 70.00% 78.00% 96.00% 58.00% 100.00% 96.00% 85.43%

CNN-CAM
3/4 100.00% 100.00% 100.00% 98.00% 60.00% 98.00% 100.00% 93.71%
2/3 100.00% 100.00% 98.00% 92.00% 46.00% 96.00% 98.00% 90.00%
1/2 96.00% 90.00% 90.00% 98.00% 40.00% 100.00% 94.00% 86.86%

CNN-SAM
3/4 100.00% 100.00% 98.00% 94.00% 56.00% 96.00% 98.00% 91.71%
2/3 100.00% 100.00% 82.00% 96.00% 56.00% 94.00% 90.00% 88.29%
1/2 100.00% 94.00% 96.00% 92.00% 30.00% 96.00% 92.00% 85.71%

CNN-CBAM
3/4 100.00% 100.00% 94.00% 92.00% 68.00% 100.00% 98.00% 93.14%
2/3 100.00% 94.00% 92.00% 96.00% 58.00% 96.00% 98.00% 90.57%
1/2 100.00% 94.00% 80.00% 92.00% 42.00% 98.00% 98.00% 86.29%

RNN
3/4 96.00% 38.00% 0.00% 2.00% 68.00% 94.00% 32.00% 47.14%
2/3 96.00% 76.00% 0.00% 2.00% 46.00% 94.00% 10.00% 46.29%
1/2 52.00% 28.00% 88.00% 16.00% 28.00% 0.00% 80.00% 41.71%

LSTM
3/4 100.00% 100.00% 84.00% 94.00% 70.00% 100.00% 98.00% 92.29%
2/3 100.00% 76.00% 90.00% 96.00% 54.00% 100.00% 100.00% 88.00%
1/2 98.00% 78.00% 86.00% 94.00% 44.00% 96.00% 98.00% 84.86%

GRU
3/4 100.00% 98.00% 100.00% 98.00% 54.00% 98.00% 98.00% 92.29%
2/3 100.00% 100.00% 98.00% 80.00% 54.00% 100.00% 98.00% 90.00%
1/2 100.00% 94.00% 78.00% 78.00% 50.00% 90.00% 96.00% 83.71%

IndRNN
3/4 90.00% 70.00% 66.00% 80.00% 70.00% 80.00% 68.00% 74.86%
2/3 80.00% 68.00% 48.00% 60.00% 50.00% 64.00% 54.00% 60.57%
1/2 64.00% 40.00% 54.00% 58.00% 40.00% 42.00% 44.00% 48.86%

FCK-DESN
3/4 100.00% 94.00% 96.00% 94.00% 84.00% 100.00% 100.00% 95.43%
2/3 100.00% 88.00% 94.00% 94.00% 80.00% 94.00% 100.00% 92.86%
1/2 100.00% 86.00% 88.00% 88.00% 80.00% 92.00% 100.00% 90.57%
are taken as the training set, the last 40 samples are the testing
set, and the rest 20 samples are the validation set. The dataset is
re-divided in this section for cross-validation. The first 40 samples
are taken as the testing set in the first division, and so on. The
testing results in the five new divisions are listed in Table 9. The
recognition rates of the new divisions are all higher than 95%,
which shows the proposed FCK-DESN does not benefit from the
particular dataset.

5.4. Alternative models

As we know, the fixed convolution kernel does not require a
arge amount of training data, but its generalization capability is
ot satisfying. An alternative model can pre-train convolutional
ayers by the CNN and then implement the trained convolution
ernels in the proposed algorithm. By this strategy, a testing
esult of 94.69% is obtained, which is lower than the FCK-DESN’s.
he reason is that the dataset size does not meet the training
equirement of the convolutional layer. This approach may obtain
better result if the dataset is adequate.
Another alternative model is replacing the ESN with the LSTM

r the GRU, i.e., FCK-LSTM or FCK-GRU. Unfortunately, they have
he same testing result of 12.50% (1/8), which is the same as the
BN. Considering the BPTT algorithm used in the LSTM and the
RU, complex and limited training data is easy to result in serious
ver-fitting.

.5. Optimization of ESN topology

Approaches that training Wout with the ridge regression [50]

nd optimizing the reservoir structure with the intrinsic plasticity

9

(IP) [51] are usually used for large size reservoirs in time series
predicting. They are used to optimize the pattern recognition
model in this paper.

In the ridge regression, a regularization term is introduced to
solve the ill-conditioned matrix. The objective function is changed
as:

L(
⌢
W out, λ) =

g−1 (y) − InStWout
2
2 + λ ∥Wout∥ (16)

It can be solved as:
⌢
W out = InSt† g−1 (y) = (InStTInSt + λI)−1InStT g−1 (y) (17)

where I represents the identity matrix and λ the regularization
parameter.

The IP algorithm is used to improve the reservoir for informa-
tion maximization [51]. The collected state InSt is transformed
into:

InStIP = f (aInSt + b) (18)

where f (x) = 1/ [1 + exp (−x)]. The a and b are parameters to
be trained and they can be updated by:

∆b = η
(
1 − (2 + 1/µ) InStIP + InSt2IP/µ

)
(19)

∆a = η/a + ∆bInSt (20)

where η is the learning rate and µ the average value of the
desired output.

Unfortunately, the recognition rate of the FCK-DESN optimized
by the ridge regression increases with decreasing regularization
parameter λ. It exceeds 90.00% until λ = 10−8 (90.31%). On the
other hand, the testing result of the FCK-DESN optimized by the
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Table 5
Engine faults recognition rates of different models.
Model p Normal working

condition
Abnormal
fuel delivery

Abnormal injection timing Valve clearance failure Abnormal rail pressure Total

+2 ◦CA −2 ◦CA +0.05 mm −0.05 mm +200 bar −200 bar

Original ESN
3/4 2.50% 20.00% 20.00% 17.50% 17.50% 12.50% 17.50% 7.50% 14.38%
2/3 2.50% 10.00% 5.00% 20.00% 27.50% 12.50% 27.50% 15.00% 15.00%
1/2 2.50% 12.50% 12.50% 12.50% 22.50% 12.50% 25.00% 12.50% 14.06%

DBN
3/4 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 12.50%
2/3 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 12.50%
1/2 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 12.50%

CNN
3/4 100.00% 100.00% 95.00% 97.50% 100.00% 97.50% 80.00% 75.00% 93.13%
2/3 95.00% 100.00% 80.00% 100.00% 100.00% 100.00% 90.00% 47.50% 89.06%
1/2 95.00% 100.00% 80.00% 95.00% 100.00% 85.00% 82.50% 50.00% 85.94%

CNN-CAM
3/4 100.00% 100.00% 80.00% 100.00% 100.00% 100.00% 90.00% 80.00% 93.75%
2/3 95.00% 100.00% 75.00% 95.00% 100.00% 100.00% 85.00% 65.00% 89.38%
1/2 100.00% 100.00% 75.00% 100.00% 100.00% 97.50% 82.50% 35.00% 86.25%

CNN-SAM
3/4 100.00% 100.00% 92.50% 95.00% 100.00% 95.00% 80.00% 75.00% 92.19%
2/3 95.00% 100.00% 87.50% 95.00% 100.00% 97.50% 72.50% 70.00% 89.69%
1/2 100.00% 100.00% 72.50% 92.50% 100.00% 95.00% 95.00% 37.50% 86.56%

CNN-CBAM
3/4 100.00% 100.00% 92.50% 97.50% 100.00% 95.00% 97.50% 70.00% 94.06%
2/3 100.00% 100.00% 95.00% 80.00% 100.00% 95.00% 87.50% 70.00% 90.94%
1/2 100.00% 100.00% 87.50% 70.00% 100.00% 92.50% 97.50% 47.50% 86.88%

RNN
3/4 32.50% 30.00% 0.00% 30.00% 10.00% 0.00% 10.00% 7.50% 15.00%
2/3 12.50% 12.50% 10.00% 7.50% 10.00% 30.00% 12.50% 5.00% 12.50%
1/2 30.00% 12.50% 5.00% 5.00% 5.00% 5.00% 15.00% 10.00% 10.94%

LSTM
3/4 100.00% 97.50% 87.50% 85.00% 95.00% 77.50% 82.50% 87.50% 89.06%
2/3 100.00% 90.00% 82.50% 80.00% 67.50% 75.00% 72.50% 80.00% 80.94%
1/2 85.00% 90.00% 60.00% 70.00% 85.00% 37.50% 57.50% 60.00% 68.13%

GRU
3/4 97.50% 95.00% 87.50% 82.50% 95.00% 82.50% 90.00% 87.50% 89.69%
2/3 100.00% 95.00% 80.00% 70.00% 62.50% 65.00% 82.50% 87.50% 80.31%
1/2 95.00% 97.50% 62.50% 42.50% 72.50% 47.50% 60.00% 52.50% 66.25%

IndRNN
3/4 80.00% 80.00% 77.50% 67.50% 62.50% 65.00% 80.00% 85.00% 74.69%
2/3 82.50% 82.50% 75.00% 65.00% 42.50% 57.50% 60.00% 50.00% 64.38%
1/2 75.00% 55.00% 40.00% 52.50% 57.50% 42.50% 40.00% 55.00% 52.19%

FCK-DESN
3/4 100.00% 100.00% 100.00% 90.00% 100.00% 97.50% 97.50% 100.00% 98.13%
2/3 100.00% 100.00% 97.50% 97.50% 95.00% 97.50% 97.50% 87.50% 96.56%
1/2 100.00% 100.00% 100.00% 92.50% 97.50% 95.00% 95.00% 90.00% 96.25%
Table 6
Recognition rates of the validation set in different ESN input dimensionalities.
n 1000 1100 1200 1300 1400 1500

Recognition rate 95.63% 96.88% 97.50% 96.25% 95.63% 98.75%

n 1600 1700 1800 1900 2000

Recognition rate 95.63% 98.13% 98.75% 96.88% 97.50%

Table 7
Recognition rates of the validation set in different reservoir sizes and spectral
radii.

IP algorithm is 98.13%, which is the same as the simple FCK-
DESN. In other words, the optimization of the ESN topology is
not necessary.

5.6. Comparison with classical method

A classical fault detection method of previous work is em-
loyed for comparison [47]. This approach uses the variational
ode decomposition (VMD) to filter vibration signals from three
hannels firstly. Nine features are extracted from the filtered
10
Fig. 9. Flow chart of the classical method.

signal of each channel, respectively. Then, correlation-based fea-
ture selection (CFS) is taken as the fitness function of the ge-
netic algorithm (GA) to search for the best feature subset from
the redundant one. Finally, the expectation–maximization (EM)
algorithm is used to cluster samples in an unsupervised way.

For the current cases, 17 kinds of characteristic parameters
are extracted from the signal filtered by the VMD: the minimum
value, the maximum value, mean value, mean square value, root
mean square, mean square error, standard deviation, kurtosis,
margin, skewness, peak to peak, square root amplitude, average
amplitude, fuzzy entropy, the Shannon entropy, the maximum
singular value, and the fourth-order cumulant. The original ESN is
taken as the classifier to ensure the credibility of the comparison.
A flow chart of this classical method is shown in Fig. 9.

When detecting the bearing faults, features are searched using
all 2100 sets of samples (300 sets in each condition). The best
feature subset selected by the CFS-GA contains the mean value,
the mean square value, the average amplitude, the Shannon en-
tropy, and the maximum singular value. The same approach is
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Table 8
P-values between the FCK-DESN and the other ten models.
Model Original ESN DBN CNN CNN-CAM CNN-SAM

p-value 1.80 × 10−21 3.49 × 10−24 8.75 × 10−11 1.52 × 10−10 2.00 × 10−11

Model CNN-CBAM RNN LSTM GRU IndRNN

p-value 6.81 × 10−10 5.29 × 10−19 5.33 × 10−13 3.42 × 10−13 7.30 × 10−17
F
t
v
a

Table 9
Recognition rates of five new divisions.
Case 1 2 3 4 5

Recognition rate 97.19% 96.25% 98.13% 98.44% 97.50%

Table 10
Bearing and engine faults recognition rates of the classical method.
Dataset p 3/4 2/3 1/2

Recognition rate Bearing 86.57% 85.71% 84.29%
Engine 86.56% 85.63% 85.00%

employed to process the diesel engine vibration signals, and the
best feature subset contains the margin, the skewness, the square
root amplitude, and the Shannon entropy. The testing results are
listed in Table 10, which are all lower than the results of the
FCK-DESN listed in Tables 4 and 5.

The best feature subsets of the two cases are different, which
eans faults of various machines cannot be detected by the
ame method. Besides, the classical method consisted of signal
ecomposition, feature extraction, feature selection, and pattern
ecognition is a complex process with many influence factors.
or example, the best subset of the bearing case selected from
alf of the samples (150 sets in each condition) contains the
ean value and the square root amplitude. The best subset of

he diesel engine case selected from half of the samples (120 sets
n each condition) contains the mean value, the skewness, and
he Shannon entropy. They are different from the best subsets
elected from all the samples and prone to adverse effects on
ecognition rate. It is challenging to maintain each step ideal
n the classical method, resulting in high dependence on the
ataset. Moreover, it makes optimization and generalization dif-
icult. Compared with it, the proposed FCK-DESN is advantageous
ecause it could accomplish most of the work by deep learning
apability to detect faults end-to-end.

. Conclusions and outlook

A novel FCK-DESN is proposed to detect rotating machinery
aults end-to-end with a small dataset. The fixed convolution ker-
els extract the features of data. The AE digs the deep information
o improve generalization capability and reduce dimensionality.
n the ESN, the processed data are copied twice to activate the
nternal states of the reservoir, and all three internal states are
sed to train the output weight matrix. Comparisons with the
riginal ESN, the DBN, the CNN, the CNN-CAM, the CNN-SAM,
he CNN-CBAM, the standard RNN, the LSTM, the GRU, and the
ndRNN show that the FCK-DESN could always obtain the highest
ecognition rates in different datasets of bearing faults (95.43%,
2.86%, and 90.00%) and engine faults (98.13%, 96.56, and 96.25%).
In future work, more precise training methods with the small

ataset for convolutional layers should be researched. The reser-
oir of the ESN is not fully understood. Developing the reservoir
ased on theoretical bases will also be the future direction.
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Table A.1
List of acronyms.
Acronym Description

DBN Deep belief network
CNN Convolutional neural network
CAM Channel attention mechanism
SAN Spatial attention mechanism
CABM Convolutional block attention module
RNN Recurrent neural network
LSTM Long short-term memory
GRU Gated recurrent unit
IndRNN Independently recurrent neural network
ESN Echo state network
AE Autoencoder
FCK-DESN Deep ESN based on fixed convolution kernels
SPWVD Smoothed pseudo-Wigner–Ville distribution

Table A.2
List of notations.
Notation Description

p Training size/Testing size
α Leaking rate
ρ Spectral radius
N Reservoir size of the ESN
n Dimensionality of the ESN input
W Reservoir internal weights of the ESN
InSt Collection of internal states
C Output of convolutional layer
Wen Encoder weights
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Appendix B. Several TFR algorithms in the Cohen’s class

The Cohen’s class time–frequency distribution of the continu-
ous signal z(t) is defined as [44]:

CC
z (t, ω) =

∫
∞

∫
∞

Az(τ , ν)φ(τ , ν)e−j(νt+ωτ )dτdν (B.1)

−∞ −∞
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ν

P

Table B.1
Kernel functions of the algorithms.
The Cohen’s class
time frequency distribution

Kernel function

BJD [sin(τυ/2)] /(τυ/2)
BD 1/

[
1 + (τ/τ0)2M + (ν + ν0)2N

]
CWD exp

[
−α(τν)2

]
MHD cos(τν/2)
RD exp(jπτν)
WVD 1
PWVD h(τ )
SPWVD h(τ )G(ν)

where t represents time, ω the frequency, τ the time delay, and
the frequency offset.
The Az is the ambiguity function of z(t):

Az(τ , ν) =

∫
∞

−∞

z(t + τ/2)z∗(t − τ/2)e−jνtdt (B.2)

where the superscripts * represents conjugate matrix.
The φ(τ , ν) is the kernel function. The kernel functions of

the algorithms mentioned in this paper are listed in Table B.1.
where M represents the length of time, N the length of frequency,
α the control parameter, and h(τ ) and G(ν) the window func-
tions. In this paper, α = 16, h(τ ) and G(ν) are both Hamming
windows [46].

When the input is a discrete signal z(n), its Cohen’s class
time–frequency distribution is:

CD
z (n, ω) = C ′

z(n, ω) ∗n ⊗ωP(n, ω) (B.3)

where ∗n represents the convolution on n, ⊗ω the cyclic con-
volution on ω, C ′

z(n, ω) the time sampling function of the CC
z .

(n, ω) =

∑
m

φ̃(n,m)e−jmω (B.4)

where φ̃(n,m) represents the discrete kernel function with zero
padding.
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